2. 上海市浦东新区周浦医院 上海健康医学院附属周浦医院呼吸与危重症医学科,上海 201318;
3. 山西医科大学第三医院 山西白求恩医院 同济山西医院检验科,太原 030032
2. Department of Pulmonary and Critical Care Medicine, Zhoupu Hospital in Pudong New Area, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China;
3. Clinical Laboratory, Third Hostipal of Shanxi Medical University, Shanxi Bethune Hostipal, Tongji Shanxi Hospital, Taiyuan 030032, China
脓毒症是宿主对感染的反应失调引起威胁生命的器官功能障碍[1],肺脏是最常受累的重要的靶器官之一,常导致急性呼吸窘迫综合征(acute respiratory distress syndrome,ARDS)。研究[2]表明,脓毒症和ARDS表现出共同的病理生理学特征,即过度炎症反应,进一步导致肺泡上皮和肺血管内皮损伤[3]。而脓毒症相关ARDS病死率明显增加,高达30%~40%[4],严重威胁着人民的健康和生命安全。因此,早期预警、尽早识别和恰当干预对于避免疾病进展并改善预后显的尤为重要。但脓毒症相关ARDS的发生发展是一个极其复杂的病理过程,涉及多系统、多靶点,目前其诊断主要基于临床特征,具有明显的局限性。文献[5-7]显示应用生物标志物进行疾病早期识别、诊断和优化临床治疗具有很好的前景。骨形态发生蛋白9(bone morphogenetic protein 9,BMP9)是一种内皮保护因子[8],主要在肝脏中表达,是门脉性肺动脉高压一种敏感和特异性的生物标志物[9],动物研究[10]显示BMP9信号通路的增强可预防吸入性脂多糖诱导的肺损伤,内源性循环BMP9是一种肺内皮保护因子。但是血清BMP9在脓毒症相关ARDS患者中的表达及作用鲜有报道。本研究旨在探讨脓毒症相关ARDS患者BMP9表达及其与传统临床指标的相关性,并评估其是否可作为脓毒症相关ARDS发生抑或预后预测的有效生物标志物,为临床的早期诊断及预后预测提供理论依据。
1 资料与方法 1.1 研究对象选取2022年5月至2023年5月于山西白求恩医院重症医学科及呼吸科重症监护室住院的符合纳入标准的脓毒症相关ARDS患者56例作为ARDS组,心源性肺水肿患者49例作为病例对照组,同期于体检中心进行健康体检的成人46例作为健康对照组。跟踪随访ARDS组患者28 d的转归情况,分为存活组和死亡组。本研究通过医院伦理委员会批准。纳入标准:①ARDS组:符合脓毒症和ARDS诊断标准[11-12];年龄≥18岁;知情同意。②病例对照组:年龄≥18岁;知情同意;符合以下心源性肺水肿诊断标准[13]:⑴临床表现为突发呼吸困难、呼吸频率增快、发绀、咳粉红色泡沫样痰等,听诊时两肺可闻及湿啰音,心脏彩超示左心室射血分数<50%且胸部X线或CT扫描提示肺水肿征象;⑵原有器质性心脏病史;具备以上2项者即可诊断为心源性肺水肿。③健康对照组:本院体检中心体检的健康成人;年龄≥18岁;知情同意。排除标准:①年龄<18岁者;②入院即死亡及转院的临床资料不完善的患者;③患有肺动脉高压、肺纤维化、肺癌和其他肺部疾患患者;④拒绝参与研究或拒绝签署知情同意书者;⑤既往有精神病史或认知功能障碍者。
1.2 方法 1.2.1 一般人口统计学资料及临床指标记录研究对象的人口学特征,包括性别、年龄。临床指标包括:外周血白细胞计数(white blood cells,WBC)、中性粒细胞计数(neutrophil,NEUT)、淋巴细胞计数(lymphocyte,LY)、C反应蛋白(c-reactive protein,CRP)、降钙素原(procalcitonin,PCT)、氧合指数、毛细血管渗漏指数、机械通气时间及住院时间。入院24 h内对脓毒症相关ARDS患者进行病情严重程度评估,包括急性生理学和慢性健康状况评估Ⅱ(acute physiology and chronic health evaluation Ⅱ,APACHE Ⅱ)、序贯器官衰竭评分(sequential organ failure assessment,SOFA)。同时追踪随访脓毒症相关ARDS患者28 d预后情况。
1.2.2 实验标本采集采集研究对象入院24 h内的外周静脉血标本,离心留取上清液,EP管分装,-80 ℃冰箱中保存备用。
1.2.3 血清BMP9测定采用双抗体夹心酶联免疫吸附法检测研究对象血清BMP9水平,试剂盒均购自武汉云克隆科技股份有限公司(批号:SEB728Hu),严格按照试剂盒说明书进行操作。实验结束后,以标准品浓度作为横坐标,对应各孔的吸光度值作为纵坐标,绘制标准曲线,根据各待测样品的吸光度值带入标准曲线方程计算获得相应的浓度,再乘以稀释倍数(2倍),得出待测样品的实际BMP9浓度。
1.3 统计学方法采用SPSS 25.0软件进行统计分析,计量资料符合正态分布的以均数±标准差(x±s)表示,非正态分布以中位数(四分位数)[M(P25,P75)]表示,采用方差分析或非参数秩和检验进行差异性比较;计数资料采用率(或构成比)进行统计描述,采用χ2检验进行差异性比较;采用Spearman相关进行相关性检验;采用多因素Logistic回归分析发病危险因素;绘制受试者工作特征曲线(receiver operating characteristic curve,ROC曲线),计算曲线下面积(area under the ROC curve,AUC)、敏感度及特异度等参数来分析相关指标的诊断效能。以P<0.05为差异有统计学意义。
2 结果 2.1 研究对象的人口统计学资料和临床指标比较本研究共纳入研究对象151例,其中ARDS组56例,病例对照组49例,健康对照组46例。3组性别构成及年龄差异均无统计学意义(均P>0.05),3组WBC、NEUT及LY计数差异均有统计学意义(均P<0.01)。ARDS组与病例对照组患者氧合指数、SOFA评分及住院时间比较,差异均有统计学意义(均P<0.01),见表 1。
指标 | 试验组(n=56) | 病例对照组(n=49) | 健康对照组(n=46) | 统计值 | P值 |
年龄(岁) | 61.96±17.80 | 66.00(54.50, 72.00) | 58.50(49.75, 59.00) | 3.626 | 0.163 |
性别(女/男) | 22/34 | 18/31 | 19/27 | 0.210 | 0.900 |
WBC(×109/L) | 11.90(5.40, 14.80) | 7.09(5.10, 8.70) | 6.16±1.30 | 15.541 | <0.001 |
NEUT(×109/L) | 10.41(4.49, 12.02) | 5.02(3.15, 6.57) | 3.68±1.05 | 35.732 | <0.001 |
LY(×109/L) | 0.87(0.32, 1.14) | 1.69(0.86, 1.62) | 1.89±0.46 | 55.020 | <0.001 |
CRP(mg/L) | 120.41(71.97, 200.00) | NA | NA | NA | NA |
PCT(ng/mL) | 14.95(0.93, 17.38) | NA | NA | NA | NA |
氧合指数(mmHg) | 177.74±57.40a | 268.11(226.38, 282.76) | NA | 37.910 | <0.001 |
毛细血管渗漏指数 | 4.33(2.50, 6.30) | NA | NA | NA | NA |
SOFA评分(分) | 7.29(4.00, 13.00)a | 1.53(0.00, 4.00) | NA | 62.338 | <0.001 |
APACHE Ⅱ评分(分) | 18.55±8.00 | NA | NA | NA | NA |
住院时间(d) | 19.02(7.50, 24.00)a | 7.98(5.00, 10.00) | NA | NA | <0.001 |
机械通气时间(d) | 6.34(0.00, 9.00) | NA | NA | NA | NA |
28 d死亡人数(例) | 30(53.57) | NA | NA | NA | NA |
注:WBC,白细胞计数;NEUT,中性粒细胞计数;LY,淋巴细胞计数;CRP,C反应蛋白;PCT,降钙素原;SOFA评分,序贯器官衰竭评分;APACHE Ⅱ评分,急性生理学和慢性健康状况评分系统Ⅱ;试验组与病例对照组相比,aP<0.001;NA表示不适用 |
3组受试者血清BMP9表达差异有统计学意义(P<0.01),而且相较于病例对照组和健康对照组,ARDS组脓毒症相关ARDS患者BMP9表达明显增高,差异有统计学意义(P<0.01),而病例对照组和健康对照组患者BMP9水平比较差异无统计学意义(P>0.05),见表 2。
指标 | 试验组(n=56) | 病例对照组(n=49) | 健康对照组(n=46) | 统计值 | P值 |
BMP9(pg/mL) | 1401.14(856.59, 1982.86)a | 438.26±128.52 | 398.96±96.55b | 80.467 | <0.001 |
注:BMP9,骨形态发生蛋白9;试验组与病例对照组和健康对照组相比,aP<0.001;表示病例对照组与健康对照组相比,bP>0.999 |
脓毒症相关ARDS患者血清BMP9水平与PCT、SOFA评分均呈正相关(分别r=0.389、0.450, 均P<0.01),与LY呈负相关(r=-0.473,P<0.01)。而血清BMP9水平与WBC、NEUT、CRP、氧合指数、毛细血管渗漏指数、APACHE Ⅱ评分、住院时间及机械通气时间的关联性分析均无统计学意义(均P>0.05),见表 3。
指标 | r值 | P值 |
WBC | -0.153 | 0.260 |
NEUT | -0.069 | 0.614 |
LY | -0.473 | 0.000 |
CRP | 0.068 | 0.617 |
PCT | 0.389 | 0.003 |
氧合指数 | 0.076 | 0.579 |
毛细血管渗漏指数 | 0.073 | 0.591 |
SOFA评分 | 0.450 | 0.001 |
APACHE Ⅱ评分 | 0.176 | 0.194 |
住院时间 | 0.091 | 0.504 |
机械通气时间 | 0.182 | 0.178 |
将表 1和表 2单因素分析中有统计学意义(P<0.05)的指标设为变量进行赋值,纳入WBC、NEUT及LY、氧合指数(氧合指数>300 mmHg为0;200<氧合指数≤300 mmHg为1;100<氧合指数≤200 mmHg为2,氧合指数≤100 mmHg为3)、BMP9及SOFA评分构建多因素Logistic回归方程,多因素Logistic回归分析结果显示,血清BMP9高表达为脓毒症相关ARDS患者发病的独立危险因素,见表 4。
指标 | β | SE | Wald χ2 | OR | 95%CI | P值 |
WBC | -1.194 | 1.030 | 1.344 | 0.303 | 0.040~2.281 | 0.246 |
NUTC | 1.618 | 1.180 | 1.881 | 5.043 | 0.500~2.237 | 0.170 |
LY | -0.071 | 0.447 | 0.025 | 0.931 | 0.388~2.237 | 0.874 |
氧合指数分级 | 0.727 | 0.578 | 1.582 | 0.208 | 0.667~6.418 | 0.208 |
BMP9 | 0.009 | 0.003 | 7.058 | 1.009 | 1.002~1.016 | 0.008 |
SOFA评分 | 0.762 | 0.432 | 3.249 | 2.143 | 0.936~4.944 | 0.071 |
绘制ROC曲线,取约登指数最大值为临界值。BMP9的ROC曲线下AUC为0.930(95% CI: 0.874~0.986,P<0.05),氧合指数的AUC为0.849(95%CI: 0.777~0.921,P<0.05),SOFA评分的AUC为0.946(95% CI 0.907~0.984,P<0.05)。BMP9对脓毒症相关ARDS诊断的最佳cut off值为773.89 pg/mL,敏感度为80.4%,特异度为100%,见表 5和图 1。
指标 | AUC及95%CI | 截断值 | 敏感度(%) | 特异度(%) | 约登指数 |
BMP9 | 0.930(0.874~0.986) | 773.89(pg/mL) | 80.4 | 100.0 | 0.804 |
氧合指数 | 0.849(0.777~0.921) | 196.92(mmHg) | 67.9 | 89.8 | 0.577 |
SOFA评分 | 0.946(0.907~0.984) | 2.5(分) | 98.2 | 75.5 | 0.737 |
![]() |
图 1 BMP9对脓毒症相关ARDS患者的诊断效能分析 Fig 1 Diagnostic efficacy of BMP9 in patients with sepsis-associated ARDS |
|
追踪随访ARDS组脓毒症相关ARDS患者28 d转归情况,分为存活组26例和死亡组30例。相较于存活组,死亡组患者BMP9水平、SOFA评分及APACHE Ⅱ评分明显增高,差异均有统计学意义(均P<0.05),而两组患者CRP、PCT、氧合指数、毛细血管渗漏指数、住院时间、机械通气时间的差异均无统计学意义(均P>0.05),见表 6。
指标 | 存活组(n=26) | 死亡组(n=30) | 统计值 | P值 |
CRP(mg/L) | 110.97(94.55, 171.92) | 128.59(70.25, 200.00) | -1.170 | 0.242 |
PCT(ng/mL) | 8.89(0.73, 12.07) | 20.20(0.98, 27.75) | -1.035 | 0.301 |
氧合指数(mmHg) | 178.15±53.01 | 177.39±61.86 | -0.049 | 0.961 |
毛细血管渗漏指数 | 3.99±2.21 | 4.63±2.47 | 1.017 | 0.314 |
SOFA评分(分) | 5.88(4.00, 8.00) | 8.50(5.00, 11.25) | -2.527 | 0.012 |
APACHE Ⅱ评分(分) | 16.27±7.59 | 20.53±7.94 | 2.045 | 0.046 |
BMP9(pg/mL) | 1035.67(789.11, 1115.40) | 1717.89±968.95 | -2.555 | 0.011 |
住院时间(d) | 21.58(11.75, 24.00) | 16.80(4.75, 27.50) | -1.727 | 0.084 |
机械通气时间(d) | 3.88(0.00, 9.00) | 8.47(0.00, 10.00) | -1.550 | 0.121 |
绘制ROC曲线,取约登指数最大值为临界值。BMP9的ROC曲线下AUC为0.699(95% CI 0.557~0.842,P<0.05),APACHE Ⅱ评分的AUC为0.669(95% CI 0.526~0.813,P<0.05),SOFA评分的AUC为0.696(95% CI 0.558~0.834,P<0.05)。BMP9对脓毒症相关ARDS预后预测的最佳临界值为2024.96 pg/mL,敏感性为43.3%,特异性为100.0%,见表 7和图 2。
指标 | AUC及95%CI | 截断值 | 敏感度(%) | 特异度(%) | 约登指数 |
BMP9(pg/mL) | 0.699(0.557~0.842) | 2024.96 | 43.3 | 100.0 | 0.433 |
SOFA评分(分) | 0.696(0.558~0.834) | 6.5 | 66.7 | 69.2 | 0.359 |
APACHE Ⅱ评分(分) | 0.669(0.526~0.813) | 16.5 | 76.7 | 57.7 | 0.344 |
![]() |
图 2 BMP9对脓毒症相关ARDS患者的预后预测分析 Fig 2 Prognostic analysis of BMP9 in patients with sepsis-associated ARDS |
|
微血管渗漏被认为在脓毒症中发挥核心作用,肺泡毛细血管通透性增加是形成ARDS的关键因素[14-15],脓毒症相关ARDS可能是肺泡毛细血管内皮细胞损伤引起的直接肺损伤和肺泡上皮损伤引起的间接肺损伤的结果。BMP9在机体生长发育过程中起着关键作用,包括血管生成、代谢及再生等[16-17],同时BMP9也是防止内皮功能障碍的血管静止因子。研究表明BMP9在肺血管内皮高表达[18],Pan等[19]通过转基因大鼠实验认为BMP9可以防止与肺动脉高压相关的过度的内皮细胞通透性。在脂多糖诱导急性肺损伤小鼠模型中[10],循环BMP9的水平持续下降。生理条件下BMP9的低循环水平或许是通过氧化还原依赖的蛋白质水解机制来维持[20],但病理状态下如何调节仍不完全清楚。本研究中,脓毒症相关ARDS患者的BMP9水平显著高于病例对照组与健康对照组,而且BMP9高表达与炎症指标PCT、LY及病情严重度SOFA评分明显相关。既往有研究认为脓毒症患者BMP9表达降低[10],而又有研究显示脓毒症组与对照组受试者BMP9水平差异无统计学意义[21]。临床研究结论并不一致,分析原因可能是脓毒症本身是一种异质性较强的综合征[22-23],在疾病不同的炎症反应阶段,以及脓毒症并发不同的器官功能障碍均可能影响机体BMP9的表达。另外,研究表明BMP9是中性粒细胞弹性蛋白酶的底物[24],而脓毒症病程中中性粒细胞可表现为免疫功能受损,其释放弹性蛋白酶能力下降[25],致使循环BMP9的降解减少。BMP9作为一种细胞外信号蛋白,在血管生成和稳态中的贡献可能是环境相关的[26-27],在脓毒症相关ARDS患者观察到BMP9高表达可能是由于机体响应如内皮激活及屏障破坏等引发的相关通路失活以努力维持血管内皮完整性。此外BMP9还参与调节与炎症相关的细胞因子、激活与炎症相关的免疫细胞,反过来炎症环境也会影响BMP9的表达[28-29]。结合既往研究,BMP9可能是一种既能调节炎症又具有促进内皮修复能力的介质,推测其在脓毒症相关ARDS这一失调的炎症反应中或许存在动态演变过程,在不同炎症反应阶段对脓毒症相关肺损伤发挥其生物学功能及组织稳态方面的作用。因此尚要扩大样本量,进一步分层分析不同病理状态下BMP9的水平。
本研究结果显示,BMP9为脓毒症相关ARDS发病的独立危险因素。进一步行诊断效能分析,发现BMP9曲线下AUC为0.930,特异度为100.0%,敏感度为80.4%,提示BMP9有潜力作为早期识别脓毒症相关ARDS的新型生物标志物。另外,追踪随访ARDS组脓毒症相关ARDS患者28 d转归情况,发现相较于存活组,死亡组患者血清BMP9水平明显增高。同时亦发现脓毒症相关ARDS患者BMP9高表达与疾病严重度SOFA评分呈明显正相关。绘制ROC曲线,进一步分析BMP9对脓毒症相关ARDS预后预测作用,结果显示ROC曲线下AUC为0.699,并不高,虽然特异度为100.0%,但敏感度仅为43.3%,提示BMP9在预后评估方面并不理想。然而本研究为单中心,样本量不是足够大,而且未能观察脓毒症相关ARDS患者BMP9表达的动态变化。仍需进一步扩大样本量,进行多中心研究,并且进行不同感染病原学的分层分析,以深入探寻BMP9在脓毒症相关ARDS发生发展中的作用。
综上,本研究结果显示,脓毒症相关ARDS患者BMP9表达显著增高,而且与炎症指标PCT、LY及病情严重度SOFA评分呈明显相关性。BMP9高表达为脓毒症相关ARDS发病的独立危险因素,其对脓毒症相关ARDS诊断的特异度及敏感度均较高,有希望成为脓毒症相关ARDS的早期识别的有效生物标志物,但其并不是很好的预后预测标志物。
利益冲突 所有作者声明无利益冲突
作者贡献声明 孙媛:试验操作、统计学分析及论文撰写;李筱妍:研究设计、论文修改及试验经费支持;张丽中:试验操作指导;王琳:数据采集及整理
[1] | Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021[J]. Intensive Care Med, 2021, 47(11): 1181-1247. DOI:10.1007/s00134-021-06506-y |
[2] | Gong HK, Chen Y, Chen ML, et al. Advanced development and mechanism of sepsis-related acute respiratory distress syndrome[J]. Front Med, 2022, 9: 1043859. DOI:10.3389/fmed.2022.1043859 |
[3] | 吴星玥, 宋振举. 急性呼吸窘迫综合征免疫精准诊断和治疗的困惑、挑战和策略[J]. 中华急诊医学杂志, 2023, 32(8): 1017-1019. DOI:10.3760/cma.j.issn.1671-0282.2023.08.001 |
[4] | Li WL, Li D, Chen YS, et al. Classic signaling pathways in alveolar injury and repair involved in sepsis-induced ALI/ARDS: new research progress and prospect[J]. Dis Markers, 2022, 2022: 6362344. DOI:10.1155/2022/6362344 |
[5] | Villar J, Herrán-Monge R, González-Higueras E, et al. Clinical and biological markers for predicting ARDS and outcome in septic patients[J]. Sci Rep, 2021, 11(1): 22702. DOI:10.1038/s41598-021-02100-w |
[6] | Lin HS, Liu Q, Zhao L, et al. Circulating pulmonary-originated epithelial biomarkers for acute respiratory distress syndrome: a systematic review and meta-analysis[J]. Int J Mol Sci, 2023, 24(7): 6090. DOI:10.3390/ijms24076090 |
[7] | von Groote T, Meersch-Dini M. Biomarkers for the prediction and judgement of sepsis and sepsis complications: a step towards precision medicine?[J]. J Clin Med, 2022, 11(19): 5782. DOI:10.3390/jcm11195782 |
[8] | Kulikauskas MR, Shaka X, Bautch VL. The versatility and paradox of BMP signaling in endothelial cell behaviors and blood vessel function[J]. Cell Mol Life Sci, 2022, 79(2): 1-28. DOI:10.1007/s00018-021-04033-z |
[9] | Nikolic I, Yung LM, Yang PR, et al. Bone morphogenetic protein 9 is a mechanistic biomarker of portopulmonary hypertension[J]. Am J Respir Crit Care Med, 2019, 199(7): 891-902. DOI:10.1164/rccm.201807-1236OC |
[10] | Li W, Long L, Yang XD, et al. Circulating BMP9 protects the pulmonary endothelium during inflammation-induced lung injury in mice[J]. Am J Respir Crit Care Med, 2021, 203(11): 1419-1430. DOI:10.1164/rccm.202005-1761OC |
[11] | Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3)[J]. JAMA, 2016, 315(8): 801-810. DOI:10.1001/jama.2016.0287 |
[12] | Fan E, Brodie D, Slutsky A S. Acute respiratory distress syndrome: advances in diagnosis and treatment[J]. JAMA, 2018, 319(7): 698-710. DOI:10.1001/jama.2017.21907 |
[13] | Ingbar DH. Cardiogenic pulmonary edema: mechanisms and treatment - an intensivist's view[J]. Curr Opin Crit Care, 2019, 25(4): 371-378. DOI:10.1097/mcc.0000000000000626 |
[14] | Wei JX, Jiang HL, Chen XH. Endothelial cell metabolism in sepsis[J]. World J Emerg Med, 2023(1): 10-16. DOI:10.5847/wjem.j.1920-8642.2023.019 |
[15] | Bos LDJ, Ware LB. Acute respiratory distress syndrome: causes, pathophysiology, and phenotypes[J]. Lancet, 2022, 400(10358): 1145-1156. DOI:10.1016/S0140-6736(22)01485-4 |
[16] | Mostafa S, Pakvasa M, Coalson E, et al. The wonders of BMP9: from mesenchymal stem cell differentiation, angiogenesis, neurogenesis, tumorigenesis, and metabolism to regenerative medicine[J]. Genes Dis, 2019, 6(3): 201-223. DOI:10.1016/j.gendis.2019.07.003 |
[17] | Xiao HZ, Wang XY, Wang C, et al. BMP9 exhibits dual and coupled roles in inducing osteogenic and angiogenic differentiation of mesenchymal stem cells[J]. Biosci Rep, 2020, 40(6): BSR20201262. DOI:10.1042/BSR20201262 |
[18] | Liu W, Deng Z, Zeng Z, et al. Highly expressed BMP9/GDF2 in postnatal mouse liver and lungs may account for its pleiotropic effects on stem cell differentiation, angiogenesis, tumor growth and metabolism[J]. Genes Dis, 2020, 7(2): 235-244. DOI:10.1016/j.gendis.2019.08.003 |
[19] | Pan H, Wang XJ, Li TQ, et al. Long-term overexpression of bmp9 prevents pulmonary hypertension[J]. J Am Coll Cardiol, 2022, 79(9): 1658. DOI:10.1016/s0735-1097(22)02649-3 |
[20] | Li W, Salmon RM, Jiang H, et al. Regulation of the alk1 ligands, BMP9 and BMP10[J]. Biochem Soc Trans, 2016, 44(4): 1135-1141. DOI:10.1042/BST20160083 |
[21] | Faiotto VB, Franci D, Enz Hubert RM, et al. Circulating levels of the angiogenesis mediators endoglin, HB-EGF, BMP-9 and FGF-2 in patients with severe sepsis and septic shock[J]. J Crit Care, 2017, 42: 162-167. DOI:10.1016/j.jcrc.2017.07.034 |
[22] | Tang AL, Shen MJ, Zhang GQ. Intestinal microcirculation dysfunction in sepsis: pathophysiology, clinical monitoring, and therapeutic interventions[J]. World J Emerg Med, 2022, 13(5): 343-348. DOI:10.5847/wjem.j.1920-8642.2022.031 |
[23] | 刘峰宇, 李想, 孙同文. 中国脓毒症十年研究回顾及展望[J]. 中华急诊医学杂志, 2023, 32(10): 1291-1295. DOI:10.3760/cma.j.issn.1671-0282.2023.10.002 |
[24] | Li W, Long L, Hoenderdos K, et al. S2 Vascular quiescence factor BMP9 is regulated by inflammation and neutrophil activation[J]. Thorax, 2015, 70(Suppl 3): A5.2-A5. DOI:10.1136/thoraxjnl-2015-207770.8 |
[25] | van der Poll T, Shankar-Hari M, Wiersinga W J. The immunology of sepsis[J]. Immunity, 2021, 54(11): 2450-2464. DOI:10.1016/j.immuni.2021.10.012 |
[26] | Morine KJ, Qiao XY, York S, et al. Bone morphogenetic protein 9 reduces cardiac fibrosis and improves cardiac function in heart failure[J]. Circulation, 2018, 138(5): 513-526. DOI:10.1161/CIRCULATIONAHA.117.031635 |
[27] | Bouvard C, Tu L, Rossi M, et al. Different cardiovascular and pulmonary phenotypes for single- and double-knock-out mice deficient in BMP9 and BMP10[J]. Cardiovasc Res, 2022, 118(7): 1805-1820. DOI:10.1093/cvr/cvab187 |
[28] | Song TZ, Huang DM, Song DZ. The potential regulatory role of BMP9 in inflammatory responses[J]. Genes Dis, 2022, 9(6): 1566-1578. DOI:10.1016/j.gendis.2021.08.010 |
[29] | Upton PD, Park JES, de Souza PM, et al. Endothelial protective factors BMP9 and BMP10 inhibit CCL2 release by human vascular endothelial cells[J]. J Cell Sci, 2020, 133(14): jcs239715. DOI:10.1242/jcs.239715 |