
2. 解放军总医院医学创新研究部转化医学研究中心,北京 100853
脓毒症(sepsis)是指机体对感染的反应失调而导致危及生命的器官功能障碍[1]。全球每年估计有4900万例脓毒症病例,病死率高达22.45%,是造成死亡的常见感染并发症之一[2]。近年来研究发现,脓毒症进展过程中常诱发失控的炎症反应与免疫功能抑制[3-4],提示基于对脓毒症免疫学特征的认识可能有助于脓毒症的诊断、治疗和预后评估。Krüppel样因子4(Krüppel-like factor 4, KLF4)是一种高度保守的含锌指的核转录因子[5],通过与靶基因启动子区的GC盒、CACCC盒和基础转录元件等相结合[6],激活或抑制多种基因的转录活性,由此参与调控细胞增殖和分化过程,发挥促进伤口愈合、骨骼发育、精子发生、维持遗传稳定性等作用[7];并通过调控巨噬细胞极化[8-9]、炎症介质释放[6, 10-13]、血管平滑肌细胞表型转换[14-15]、氧化应激损伤[16]、细胞凋亡[17]与自噬[18-19]等参与炎症反应。鉴于KLF4在免疫细胞分化成熟及炎症反应中的重要调控作用,本文拟综述其参与脓毒症病理生理过程的潜在意义与可能机制,以期为脓毒症治疗提供新思路。
1 KLF4与免疫功能障碍 1.1 固有免疫细胞作为抵御病原微生物感染的第一道防线,固有免疫细胞的功能至关重要。研究发现脓毒症患者的淋巴细胞数量减少而中性粒细胞显著增加并伴有免疫抑制因子的高水平表达[20]。已经证实,KLF4是维持中性粒细胞生物学活性的关键调节因子。体外实验中,KLF4缺陷的中性粒细胞对炎症刺激反应性降低,包括细胞因子和活性氧产生减少、脱颗粒、细菌杀灭和清除功能受损,导致KLF4敲除小鼠对细菌感染的易感性增加,但对脂多糖(lipopolysaccharide, LPS)诱发的脓毒性休克耐受[21]。
在单核-巨噬细胞系统中,KLF4通过直接激活单核细胞特异性受体CD14的启动子发挥促分化效应[22];另一方面,KLF4通过上调p21和抑制BAX表达来防止骨髓单核细胞凋亡,以维持小鼠循环炎性Ly6C+单核细胞数量[23-24]。巨噬细胞在受到白细胞介素(interleukin, IL)-4刺激后KLF4表达上调,通过信号传导及转录激活因子6(signal transducer and activator of transcription, STAT6)依赖的方式诱导其向M2极化[25]。同时,KLF4介导的MCP-1诱导蛋白1(MCP-1 induced protein 1, MCPIP1)通过下调核因子-κB(nuclear factor-kappa B, NF-κB)抑制M1极化,并经由其去泛素化酶和核糖核酸酶双重酶活性促进活性氧产生、内质网应激和自噬,实现巨噬细胞向M2极化[9]。IL-4还可促进巨噬细胞KLF4 SUMO化修饰,增强其与精氨酸酶-1(arginase 1, Arg-1)启动子的结合能力[26]。与之相反,在向M1极化时KLF4表达水平明显降低。缺乏KLF4的巨噬细胞呈现促炎因子基因表达上调、杀菌活性增强等M1表型[27]。分化过程中,除经典的巨噬细胞外,还有小部分巨噬细胞驻留在组织中,主要负责清除局部的凋亡细胞。在此类细胞中,KLF4协同KLF2调控凋亡细胞受体表达,增强特异性吞噬活性,并减弱Toll样受体(Toll-like receptor, TLR)9表达,确保清除凋亡细胞的同时不会诱导自身免疫反应的发生[28]。
固有免疫系统中,抗原提呈功能最强的树突状细胞主要分为经典树突状细胞(conventional dendritic cell,cDC)和浆细胞样树突状细胞(plasmacytoid dendritic cell,pDC)。小鼠cDC包括cDC1和cDC2亚群,其中cDC2的发育依赖于KLF4[29],cDC2与CD4+ T细胞相互作用,促进皮肤、肺及肠道辅助性T细胞(helper T cell, Th)2的分化[30]。有研究证实,KLF4 cDC条件性缺失会损害曼氏血吸虫、血吸虫虫卵抗原和尘螨刺激诱导的Th2细胞反应,而不影响细胞毒性T细胞、Th1和Th17细胞对单纯疱疹病毒、弓形虫和鼠柠檬酸杆菌感染的反应[31]。此外,KLF4缺乏导致小鼠脾脏中pre-cDC祖细胞数量及支持NK细胞存活的CD11chi DC数量显著减少,加之CD27+/-/CD11b+ NK细胞凋亡增加,最终造成血液和脾脏中NK细胞明显下降[32]。
1.2 适应性免疫细胞在适应性免疫细胞的分化与激活过程中,KLF4同样发挥重要作用。CD4+ T细胞中,KLF4通过与IL-17a启动子区域结合直接调节Th17细胞分化[33]。在CD8+ T细胞的激活过程中,KLF4具有抑制CD8+ T细胞增殖的能力[34]。体外实验发现,CD8+ T细胞表面T细胞受体(T cell receptor, TCR)活化可引起转录因子E74样因子4(E74-like factor 4, ELF4)-KLF4快速下调,从而解除抑制,刺激细胞迅速增殖。
B细胞成熟过程中,KLF4表达逐渐增多,通过对细胞周期蛋白D2的转录调控,促进B细胞增殖。KLF4缺失小鼠骨髓中pre-B细胞和脾脏中成熟B细胞均相应减少;体外活化KLF4缺失B细胞的B细胞受体(B cell receptor, BCR),也只能诱导少数细胞进入分裂周期进行增殖[35]。与之相反,B细胞激活后KLF4表达显著减少,并具有抑制增殖的作用。活化增殖中的B细胞中过度表达KLF4会引起细胞周期停滞[36]。在记忆性B细胞中同样观察到,过表达KLF4将延迟细胞进入分裂周期,减少细胞增殖[37]。
由此可见,KLF4在机体免疫细胞分化、成熟、增殖、激活、功能发挥及稳态维持中发挥着至关重要的作用,是机体防御机制的重要调节因子。免疫细胞凋亡增强、增殖受抑、功能耗竭等均是脓毒症免疫功能障碍的典型特征[3],严重的免疫功能紊乱或免疫状态恶化也被证明与不良预后高度相关[38]。因此,针对KLF4的调控可能是脓毒症免疫治疗的潜在靶点之一。
2 脓毒症状态下KLF4的表达特征通过对225例脓毒症患者的血培养进行分析,排名前四的病原体包括大肠杆菌、链球菌、凝固酶阴性葡萄球菌和金黄色葡萄球菌[39]。研究提示,KLF4在模拟不同病原体感染的脓毒症模型中呈现差异性表达。多篇报道采用大肠杆菌来源的LPS刺激巨噬细胞,观察到KLF4蛋白水平呈剂量和时间依赖性增加[11-12]。同样,在伤寒沙门菌来源的LPS、γ干扰素(interferon-γ, IFN-γ)或肿瘤坏死因子α(tumor necrosis factor-α, TNF-α)处理的巨噬细胞中,也观察到KLF4表达明显上调[40]。小胶质细胞是中枢神经系统中固有的免疫效应细胞,LPS、IL-1β诱导后KLF4的表达也见显著增强[41-43]。肺炎链球菌感染模型中,肺炎链球菌与宿主细胞直接接触并释放LytA依赖性DNA,通过TLR9/髓样分化因子(myeloid differentiation factor 88, MyD88)途径诱导巨噬细胞表达KLF4[44]。但更多的研究提出矛盾性观点:在骨髓来源的巨噬细胞和RAW264.7细胞系中LPS会抑制KLF4表达[8, 45]。李鑫等[46]实验中观察到,LPS刺激RAW264.7细胞3 hKLF4 mRNA相对表达量降低约70%。
进一步研究证实,在KLF4转录起始位点上游2kb范围内有三个典型的干扰素调节因子2(interferon regulatory factor 2, IRF2)结合位点,直接诱导KLF4表达。在LPS处理的小鼠巨噬细胞中,IRF2通过蛋白酶途径发生早期降解,由此可能解释KLF4的表达降低[47]。Tang等[48]提出LPS和IFN-γ联合刺激后,THP-1巨噬细胞系中DNA甲基转移酶1(DNA methyltransferase 1, DNMT1)表达上调,DNMT1通过催化KLF4启动子区域的DNA甲基化下调KLF4表达。在血管内皮细胞中,给予TNF-α处理激活NF-κB通路,发现NF-κB在将DNMT3A招募至KLF4 CpG岛中发挥重要作用,敲除或抑制NF-κB则显著增强TNF-α刺激后KLF4表达[49],这可能为脓毒症状态下巨噬细胞KLF4表达下调提供新的解释。在气管内滴注LPS诱导急性肺损伤模型中发现,肺组织巨噬细胞miR-34a表达增强,进而负向调控KLF4表达[50]。除此之外,在脓毒症小鼠巨噬细胞和LPS刺激巨噬细胞中均观察到,TLR4激活促进细胞外信号调节激酶(extracellular signal-regulated kinase, ERK)1/2磷酸化,然后促进KLF4的泛素化和降解[51]。
由此可见,KLF4在脓毒症的异常表达具有病原菌依赖性,并受到转录、表观遗传修饰、miRNA、蛋白质稳定性等多水平调节。深入探究KLF4异常表达与脓毒症过度炎症及免疫抑制的相关性具有重要意义。
3 KLF4对脓毒症炎症及免疫反应的调控机制KLF4对炎症及免疫反应的调控具有背景依赖性及细胞特异性,在不同脓毒症模型中发挥促炎或抗炎作用。
3.1 KLF4的促炎作用小鼠巨噬细胞中,LPS刺激增加了KLF4与含ETS域转录因子3(ETS transcription factor, Elk3)启动子的结合,通过增加血红素氧合酶1(heme oxygenase-1, HO-1)表达提高对细菌的吞噬能力[52]。KLF4还可结合诱生型一氧化氮合酶(inducible nitric-oxide synthase, iNOS)启动子,并与NF-κB家族成员p65相互作用共同介导iNOS表达发挥促炎效应[40]。此外,KLF4可促进晚期炎症介质高迁移率族蛋白B1(high mobility group box-1 protein, HMGB1)表达,在脓毒症晚期发挥重要调控作用[10]。在小鼠肺炎链球菌感染模型中,KLF4促进中性粒细胞和巨噬细胞等髓系细胞TNF-α、角质形成细胞趋化分子(keratinocyte chemoattractant, KC)、IL-1β、IL-6的合成及分泌,同时降低抗炎细胞因子IL-10的产生,也是促进早期炎性反应的重要调节因子[53]。
在树突状细胞中,KLF4直接结合IL-6启动子区域,同时通过乙酰化进行染色质重塑促进LPS刺激后IL-6表达和分泌[13, 54],促进炎症反应过程。小胶质细胞中KLF4促进Brefeldin A抑制的鸟嘌呤核苷酸交换蛋白1(brefeldin A-inhibited guanine nucleotide-exchange protein 1, BIG1)的转录表达,进而激活磷脂酰肌醇3激酶(phosphatidylinositol 3 kinase, PI3K)/蛋白激酶B(protein kinase B, Akt)/NF-κB通路,促进LPS诱导促炎细胞因子、iNOS和环氧合酶2(cyclooxygenase-2, COX-2)表达,下调IL-10表达,发挥促炎作用[41]。同样,Kaushik等[42]报道,KLF4可能协同磷酸化NF-κB共同上调促炎细胞因子产生。IL-1β刺激小胶质细胞后,KLF4可诱导单核细胞趋化蛋白1(monocyte chemoattractant protein-1, MCP-1)和IL-6表达,并通过与IL-1β启动子结合进一步刺激内源性IL-1β的产生,放大炎症级联反应[43]。
3.2 KLF4的抗炎效应Liao等[25]的研究揭示了KLF4的抗炎功效。LPS刺激后KLF4缺陷巨噬细胞的促炎基因表达增强,如COX-2、TNF-α、MCP-1和iNOS。进一步分析表明,KLF4缺乏使辅酶激活子P300/CBP相关因子(P300/CBP-associated factor, PCAF)向COX-2启动子的募集增多,协同增强了NF-κB对COX-2启动子的转录活性。KLF4还通过诱导MCPIP1去泛素化TNF受体相关因子6(TNF receptor-associated factor 6, TRAF6),阻止NF-κB激活,降低TNF-α、IL-1β、IL-6、MCP-1等表达及分泌,减轻LPS诱导的炎症反应[8]。巨噬细胞KLF4的抗炎作用还体现在对IL-10转录表达的直接促进效应[13]及对IL-6、IL-1β等基因的转录抑制[6, 12]。此外,KLF4可通过下调巨噬细胞整合素α2B(integrin alpha 2B, ITGA2B)发挥抗炎作用,减轻脓毒症组织损伤[51]。
因此,KLF4对炎症和免疫的调控具有多效性,通过不同机制发挥促炎或抗炎作用。随着脓毒症病程进展,KLF4可能发挥不同效应以调节炎症反应失衡和免疫功能障碍。
4 KLF4与脓毒症及多器官损害多器官功能障碍是脓毒症导致死亡的主要原因之一,近年来越来越多的研究关注KLF4在器官损伤中的作用,并探究以此为靶点的干预和治疗策略。
4.1 肺损伤多项体外、体内实验发现,肺损伤的肺组织和细胞内KLF4表达降低,其表达水平受多种miRNA靶向调控。有学者采用LPS处理人肺成纤维细胞,观察到miR-409-3p[55]、miR-429[56]、miR-4262[57]等表达上调,均可靶向负调控KLF4,导致KLF4表达水平降低。过表达KLF4则逆转LPS诱导PI3K/Akt和Janus激酶(Janus kinase, JAK)/STAT途径中关键激酶的活性,抑制NF-κB活化,减轻LPS所致细胞凋亡和炎症反应[57]。在小鼠LPS诱导的急性肺损伤模型中,发现肺组织miR-7表达上调,敲除miR-7可进一步促进KLF4表达,继而抑制NF-κB、Akt和ERK的磷酸化,减少促炎细胞因子TNF-α同时增加抗炎细胞因子IL-10和TGF-β1的产生[58]。与LPS作用相反,肺炎链球菌感染导致肺上皮细胞KLF4表达明显增加,通过转录活化直接上调IL-10水平,发挥抗炎作用[59]。
4.2 心肌损伤KLF4在LPS诱导心肌细胞损伤后明显降低,过表达KLF4可抑制TLR4,促进核因子E2相关因子2(nuclear factor erythroid 2-related factor 2, Nrf2)的核转移,改善氧化应激及促炎介质释放,减轻心肌细胞凋亡发挥保护作用[16]。
4.3 血管损伤在TNF-α模拟的血管损伤模型中,同样观察到KLF4表达降低[60]。血管内皮细胞中,KLF4抑制TNF-α诱导血管细胞黏附分子-1(vascular cell adhesionmolecule-1, VCAM1)和组织因子(tissue factor, TF)产生,并通过诱导内皮型一氧化氮合酶(endothelial nitric-oxide synthase, eNOS)和血栓调节蛋白(thrombomodulin, TM)发挥强大的抗炎效应[61-62]。相反,在血管平滑肌细胞中,LPS刺激诱导KLF4表达上调,KLF4通过竞争性结合CPI-17启动子区域抑制其转录表达,CPI-17表达水平降低与LPS所致血管低收缩性、低血压和病死率密切相关[63]。
4.4 肾损伤KLF4在肾损伤中的作用和相关机制鲜有报道。在脓毒症肾损伤模型中,肾组织KLF4基因和蛋白表达明显降低,推测KLF4表达减少将伴随抗炎及抗血栓形成能力下降,可能促进脓毒症急性肾损伤的发生[64]。
4.5 肠上皮损伤在脓毒症动物小肠组织中,也观察到KLF4表达受抑。KLF4下调导致对基质金属蛋白酶2(matrix metalloproteinase 2, MMP2)表达的抑制作用减弱[65],并通过抑制细胞周期激活剂(cyclin D2, Ccnd2)表达减轻肠隐窝细胞的增殖活性并促进凋亡[17],诱导肠上皮损伤及功能障碍。
总之,KLF4具有广泛的抗炎、减轻氧化应激、调节细胞增殖与凋亡等效应,在脓毒症相关肺、心肌、血管、肾脏、肠道等多器官组织损伤中发挥保护作用。KLF4的表达可由多种药物激活,包括HMG-CoA还原酶抑制剂、白藜芦醇、蛋白酶体抑制剂(如硼替佐米)等[66],因此KLF4或将成为脓毒症相关脏器功能损伤的潜在干预靶点。
随着研究的不断深入,作为一种核转录因子,KLF4越来越多的功能被逐渐发现并揭示。在炎症和免疫调控方面,KLF4几乎参与所有免疫细胞的分化、成熟、增殖、激活、功能及稳态维持,并通过不同机制发挥促炎或抗炎效应。随着对脓毒症免疫学机制的不断探索,目前认为炎症失控与免疫抑制在脓毒症发生发展过程中至关重要。KLF4在模拟多种病原体感染的脓毒症状态下呈现差异性表达,推测可能在脓毒症的不同阶段发挥作用各异。值得关注的是,KLF4在脓毒症相关肺、心肌、血管、肾脏、肠道等多脏器损伤模型中均表现出一点保护作用,针对KLF4的药物是否能给脓毒症带来新的治疗获益仍需深入研究。
利益冲突 所有作者声明无利益冲突
[1] | Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for Sepsis and septic shock (Sepsis-3)[J]. JAMA, 2016, 315(8): 801-810. DOI:10.1001/jama.2016.0287 |
[2] | Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017:analysis for the Global Burden of Disease Study[J]. Lancet, 2020, 395(10219): 200-211. DOI:10.1016/S0140-6736(19)32989-7 |
[3] | van der Poll T, Shankar-Hari M, Wiersinga WJ. The immunology of sepsis[J]. Immunity, 2021, 54(11): 2450-2464. DOI:10.1016/j.immuni.2021.10.012 |
[4] | 朱迪, 郭树彬. 脓毒症外周血单个核细胞的免疫特征研究进展[J]. 中华急诊医学杂志, 2022, 31(9): 1289-1293. DOI:10.3760/cma.j.issn.1671-0282.2022.09.026 |
[5] | Shields JM, Christy RJ, Yang VW. Identification and characterization of a gene encoding a gut-enriched Krüppel-like factor expressed during growth arrest[J]. J Biol Chem, 1996, 271(33): 20009-20017. DOI:10.1074/jbc.271.33.20009 |
[6] | 冯衍生, 刘梅冬, 刘瑛, 等. Kruppel样因子4对内毒素所致IL-6基因表达的调控及机制研究[J]. 生物化学与生物物理进展, 2009, 36(10): 1313-1318. DOI:10.3724/SP.J.1206.2009.00168 |
[7] | Ghaleb AM, Yang VW. Krüppel-like factor 4(KLF4): what we currently know[J]. Gene, 2017, 611: 27-37. DOI:10.1016/j.gene.2017.02.025 |
[8] | Li ZZ, Jia YH, Han SC, et al. Klf4 alleviates lipopolysaccharide-induced inflammation by inducing expression of MCP-1 induced protein 1 to deubiquitinate TRAF6[J]. Cell Physiol Biochem, 2018, 47(6): 2278-2290. DOI:10.1159/000491538 |
[9] | Kapoor N, Niu JL, Saad Y, et al. Transcription factors STAT6 and KLF4 implement macrophage polarization via the dual catalytic Powers of MCPIP[J]. J Immunol, 2015, 194(12): 6011-6023. DOI:10.4049/jimmunol.1402797 |
[10] | Liu JW, Liu Y, Zhang HL, et al. KLF4 promotes the expression, translocation, and releas eof HMGB1 in RAW264.7 macrophages in response to LPS[J]. Shock, 2008, 30(3): 260-266. DOI:10.1097/shk.0b013e318162bef7 |
[11] | Liu JW, Zhang HL, Liu Y, et al. KLF4 regulates the expression of interleukin-10 in RAW264.7 macrophages[J]. Biochem Biophys Res Commun, 2007, 362(3): 575-581. DOI:10.1016/j.bbrc.2007.07.157 |
[12] | Liu JW, Yang T, Liu Y, et al. Krüppel-like factor 4 inhibits the expression of interleukin-1 beta in lipopolysaccharide-induced RAW264.7 macrophages[J]. FEBS Lett, 2012, 586(6): 834-840. DOI:10.1016/j.febslet.2012.02.003 |
[13] | Czakai K, Leonhardt I, Dix A, et al. Krüppel-like Factor 4 modulates interleukin-6 release in human dendritic cells after in vitro stimulation with Aspergillus fumigatus and Candida albicans[J]. Sci Rep, 2016, 6: 27990. DOI:10.1038/srep27990 |
[14] | Li HX, Han M, Bernier M, et al. Krüppel-like factor 4 promotes differentiation by transforming growth factor-beta receptor-mediated Smad and p38 MAPK signaling in vascular smooth muscle cells[J]. J Biol Chem, 2010, 285(23): 17846-17856. DOI:10.1074/jbc.M109.076992 |
[15] | Yang C, Xiao X, Huang L, et al. Role of kruppel-like factor 4 in atherosclerosis[J]. Clin Chim Acta, 2021, 512: 135-141. DOI:10.1016/j.cca.2020.11.002 |
[16] | 曹剑英, 张彦周, 丁显飞, 等. KLF4在LPS诱导的心肌细胞损伤中的作用研究[J]. 中华急诊医学杂志, 2021, 30(6): 704-709. DOI:10.3760/cma.j.issn.1671-0282.2021.06.012 |
[17] | Tong L, Tang CX, Cai CJ, et al. Upregulation of the microRNA rno-miR-146b-5p may be involved in the development of intestinal injury through inhibition of Kruppel-like factor 4 in intestinal sepsis[J]. Bioengineered, 2020, 11(1): 1334-1349. DOI:10.1080/21655979.2020.1851476 |
[18] | Zhao LC, Zhang QH, Liang J, et al. Astrocyte elevated gene-1 induces autophagy in diabetic cardiomyopathy through upregulation of KLF4[J]. J Cell Biochem, 2019, 120(6): 9709-9715. DOI:10.1002/jcb.28249 |
[19] | Gan L, Liu ZJ, Luo D, et al. Reduced endoplasmic reticulum stress-mediated autophagy is required for leptin alleviating inflammation in adipose tissue[J]. Front Immunol, 2017, 8: 1507. DOI:10.3389/fimmu.2017.01507 |
[20] | Dai XK, Ding ZX, Tan YY, et al. Neutrophils inhibit CD8+T cells immune response by arginase-1 signaling in patients with sepsis[J]. World J Emerg Med, 2022, 13(4): 266-273. DOI:10.5847/wjem.j.1920-8642.2022.068 |
[21] | Shen YY, Hong H, Sangwung P, et al. Kruppel-like factor 4 regulates neutrophil activation[J]. Blood Adv, 2017, 1(11): 662-668. DOI:10.1182/bloodadvances.2017004341 |
[22] | Feinberg MW, Wara AK, Cao ZX, et al. The Kruppel-like factor KLF4 is a critical regulator of monocyte differentiation[J]. EMBO J, 2007, 26(18): 4138-4148. DOI:10.1038/sj.emboj.7601824 |
[23] | Kurotaki D, Osato N, Nishiyama A, et al. Essential role of the IRF8-KLF4 transcription factor cascade in murine monocyte differentiation[J]. Blood, 2013, 121(10): 1839-1849. DOI:10.1182/blood-2012-06-437863 |
[24] | Alder JK, Georgantas RW 3rd, Hildreth RL, et al. Kruppel-like factor 4 is essential for inflammatory monocyte differentiation in vivo[J]. J Immunol, 2008, 180(8): 5645-5652. DOI:10.4049/jimmunol.180.8.5645 |
[25] | Liao XD, Sharma N, Kapadia F, et al. Krüppel-like factor 4 regulates macrophage polarization[J]. J Clin Invest, 2011, 121(7): 2736-2749. DOI:10.1172/JCI45444 |
[26] | Wang KZ, Zhou W, Cai Q, et al. SUMOylation of KLF4 promotes IL-4 induced macrophage M2 polarization[J]. Cell Cycle, 2017, 16(4): 374-381. DOI:10.1080/15384101.2016.1269045 |
[27] | Arora S, Singh P, Ahmad S, et al. Comprehensive integrative analysis reveals the association of KLF4 with macrophage infiltration and polarization in lung cancer microenvironment[J]. Cells, 2021, 10(8): 2091. DOI:10.3390/cells10082091 |
[28] | Roberts AW, Lee BL, Deguine J, et al. Tissue-resident macrophages are locally programmed for silent clearance of apoptotic cells[J]. Immunity, 2017, 47(5): 913-927.e6. DOI:10.1016/j.immuni.2017.10.006 |
[29] | Collin M, Bigley V. Human dendritic cell subsets: an update[J]. Immunology, 2018, 154(1): 3-20. DOI:10.1111/imm.12888 |
[30] | Hilligan KL, Ronchese F. Antigen presentation by dendritic cells and their instruction of CD4+T helper cell responses[J]. Cell Mol Immunol, 2020, 17(6): 587-599. DOI:10.1038/s41423-020-0465-0 |
[31] | Tussiwand R, Everts B, Grajales-Reyes GE, et al. Klf4 expression in conventional dendritic cells is required for T helper 2 cell responses[J]. Immunity, 2015, 42(5): 916-928. DOI:10.1016/j.immuni.2015.04.017 |
[32] | Park CS, Lee PH, Yamada T, et al. Kruppel-like factor 4(KLF4) promotes the survival of natural killer cells and maintains the number of conventional dendritic cells in the spleen[J]. J Leukoc Biol, 2012, 91(5): 739-750. DOI:10.1189/jlb.0811413 |
[33] | Yang X, Mathis BJ, Huang Y, et al. KLF4 promotes diabetic chronic wound healing by suppressing Th17 cell differentiation in an MDSC-dependent manner[J]. J Diabetes Res, 2021, 2021: 7945117. DOI:10.1155/2021/7945117 |
[34] | Mamonkin M, Shen Y, Lee PH, et al. Differential roles of KLF4 in the development and differentiation of CD8+T cells[J]. Immunol Lett, 2013, 156(1/2): 94-101. DOI:10.1016/j.imlet.2013.09.008 |
[35] | Klaewsongkram J, Yang YH, Golech S, et al. Krüppel-like factor 4 regulates B cell number and activation-induced B cell proliferation[J]. J Immunol, 2007, 179(7): 4679-4684. DOI:10.4049/jimmunol.179.7.4679 |
[36] | Yusuf I, Kharas MG, Chen J, et al. KLF4 is a FOXO target gene that suppresses B cell proliferation[J]. Int Immunol, 2008, 20(5): 671-681. DOI:10.1093/intimm/dxn024 |
[37] | Good KL, Tangye SG. Decreased expression of Kruppel-like factors in memory B cells induces the rapid response typical of secondary antibody responses[J]. Proc Natl Acad Sci U S A, 2007, 104(33): 13420-13425. DOI:10.1073/pnas.0703872104 |
[38] | Yin J, Chen Y, Huang JL, et al. Prognosis-related classification and dynamic monitoring of immune status in patients with sepsis: a prospective observational study[J]. World J Emerg Med, 2021, 12(3): 185-191. DOI:10.5847/wjem.j.1920-8642.2021.03.004 |
[39] | Novosad SA, Sapiano MR, Grigg C, et al. Vital signs: epidemiology of Sepsis: prevalence of health care factors and opportunities for prevention[J]. MMWR Morb Mortal Wkly Rep, 2016, 65(33): 864-869. DOI:10.15585/mmwr.mm6533e1 |
[40] | Feinberg MW, Cao ZX, Wara AK, et al. Kruppel-like factor 4 is a mediator of proinflammatory signaling in macrophages[J]. J Biol Chem, 2005, 280(46): 38247-38258. DOI:10.1074/jbc.M509378200 |
[41] | You ZJ, Yang ZZ, Cao S, et al. The novel KLF4/BIG1 regulates LPS-mediated neuro-inflammation and migration in BV2 cells via PI3K/Akt/NF-kB signaling pathway[J]. Neuroscience, 2022, 488: 102-111. DOI:10.1016/j.neuroscience.2022.01.014 |
[42] | Kaushik DK, Gupta M, Das S, et al. Krüppel-like factor 4, a novel transcription factor regulates microglial activation and subsequent neuroinflammation[J]. J Neuroinflammation, 2010, 7: 68. DOI:10.1186/1742-2094-7-68 |
[43] | Kaushik DK, Thounaojam MC, Kumawat KL, et al. Interleukin-1β orchestrates underlying inflammatory responses in microglia via Krüppel-like factor 4[J]. J Neurochem, 2013, 127(2): 233-244. DOI:10.1111/jnc.12382 |
[44] | Herta T, Bhattacharyya A, Bollensdorf C, et al. DNA-release by Streptococcus pneumoniae autolysin LytA induced Krueppel-like factor 4 expression in macrophages[J]. Sci Rep, 2018, 8(1): 5723. DOI:10.1038/s41598-018-24152-1 |
[45] | Zare-Chahoki A, Ahmadi-Zeidabadi M, Azadarmaki S, et al. Inflammation in an animal model of multiple sclerosis leads to microRNA-25-3p dysregulation associated with inhibition of pten and Klf4[J]. Iran J Allergy Asthma Immunol, 2021, 20(3): 314-325. DOI:10.18502/ijaai.v20i3.6337 |
[46] | 李鑫, 马立芝, 向国安, 等. 阿托伐他汀对KLF4过表达的RAW264.7细胞表型偏移的影响[J]. 生物技术通讯, 2019, 30(6): 792-797. DOI:10.3969/j.issn.1009-0002.2019.06.011 |
[47] | Cui HC, Banerjee S, Guo SJ, et al. IFN regulatory factor 2 inhibits expression of glycolytic genes and lipopolysaccharide-induced proinflammatory responses in macrophages[J]. J Immunol, 2018, 200(9): 3218-3230. DOI:10.4049/jimmunol.1701571 |
[48] | Tang RZ, Zhu JJ, Yang FF, et al. DNA methyltransferase 1 and Krüppel-like factor 4 axis regulates macrophage inflammation and atherosclerosis[J]. J Mol Cell Cardiol, 2019, 128: 11-24. DOI:10.1016/j.yjmcc.2019.01.009 |
[49] | Zhu XX, Du J, Yu JJ, et al. LncRNA NKILA regulates endothelium inflammation by controlling a NF-κB/KLF4 positive feedback loop[J]. J Mol Cell Cardiol, 2019, 126: 60-69. DOI:10.1016/j.yjmcc.2018.11.001 |
[50] | Khan MJ, Singh P, Dohare R, et al. Inhibition of miRNA-34a promotes M2 macrophage polarization and improves LPS-induced lung injury by targeting Klf4[J]. Genes, 2020, 11(9): 966. DOI:10.3390/genes11090966 |
[51] | Li CW, Yu L, Mai C, et al. KLF4 down-regulation resulting from TLR4 promotion of ERK1/2 phosphorylation underpins inflammatory response in sepsis[J]. J Cell Mol Med, 2021, 25(4): 2013-2024. DOI:10.1111/jcmm.16082 |
[52] | Tsoyi K, Geldart AM, Christou H, et al. Elk-3 is a KLF4-regulated gene that modulates the phagocytosis of bacteria by macrophages[J]. J Leukoc Biol, 2015, 97(1): 171-180. DOI:10.1189/jlb.4A0214-087R |
[53] | Herta T, Bhattacharyya A, Rosolowski M, et al. Krueppel-like factor 4 expression in phagocytes regulates early inflammatory response and disease severity in pneumococcal pneumonia[J]. Front Immunol, 2021, 12: 726135. DOI:10.3389/fimmu.2021.726135 |
[54] | Rosenzweig JM, Glenn JD, Calabresi PA, et al. KLF4 modulates expression of IL-6 in dendritic cells via both promoter activation and epigenetic modification[J]. J Biol Chem, 2013, 288(33): 23868-23874. DOI:10.1074/jbc.M113.479576 |
[55] | Wang Q, Zhang XJ, Chen DH. circ_VMA21 protects WI-38 cells against LPS-induced apoptotic and inflammatory injury by acting on the miR-409-3p/KLF4 axis[J]. Gen Physiol Biophys, 2021, 40(4): 275-287. DOI:10.4149/gpb_2021011 |
[56] | Zhang L, Yan HL, Wang HP, et al. MicroRNA (miR)-429 promotes inflammatory injury by targeting kruppel-like factor 4(KLF4) in neonatal pneumonia[J]. Curr Neurovasc Res, 2020, 17(1): 102-109. DOI:10.2174/1567202617666200128143634 |
[57] | Li XL, Zhang QQ, Yang ZG. Silence of MEG3 intensifies lipopolysaccharide-stimulated damage of human lung cells through modulating miR-4262[J]. Artif Cells Nanomed Biotechnol, 2019, 47(1): 2369-2378. DOI:10.1080/21691401.2019.1623233 |
[58] | Zhao JJ, Chen C, Guo MM, et al. MicroRNA-7 deficiency ameliorates the pathologies of acute lung injury through elevating KLF4[J]. Front Immunol, 2016, 7: 389. DOI:10.3389/fimmu.2016.00389 |
[59] | Zahlten J, Steinicke R, Bertrams W, et al. TLR9-and Src-dependent expression of Krueppel-like factor 4 controls interleukin-10 expression in pneumonia[J]. Eur Respir J, 2013, 41(2): 384-391. DOI:10.1183/09031936.00196311 |
[60] | Lu Q, Meng QY, Qi MR, et al. Shear-sensitive lncRNA AF131217.1 inhibits inflammation in HUVECs via regulation of KLF4[J]. Hypertension, 2019, 73(5): e25-e34. DOI:10.1161/HYPERTENSIONAHA.118.12476 |
[61] | Yoshida T, Yamashita M, Horimai C, et al. Deletion of Krüppel-like factor 4 in endothelial and hematopoietic cells enhances neointimal formation following vascular injury[J]. J Am Heart Assoc, 2014, 3(1): e000622. DOI:10.1161/JAHA.113.000622 |
[62] | Hamik A, Lin ZY, Kumar A, et al. Kruppel-like factor 4 regulates endothelial inflammation[J]. J Biol Chem, 2007, 282(18): 13769-13779. DOI:10.1074/jbc.M700078200 |
[63] | Zhao GG, Zhong Y, Su W, et al. Transcriptional suppression of CPI-17 gene expression in vascular smooth muscle cells by tumor necrosis factor, Krüppel-like factor 4, and Sp1 is associated with lipopolysaccharide-induced vascular hypocontractility, hypotension, and mortality[J]. Mol Cell Biol, 2019, 39(11): e00070-e00019. DOI:10.1128/MCB.00070-19 |
[64] | 姜启栋, 伍长学, 张琼. MiR-34a调控Kruppel样因子4参与脂多糖介导的脓毒症相关性肾损伤[J]. 中华危重病急救医学, 2018, 30(4): 351-354. DOI:10.3760/cma.j.issn.2095-4352.2018.04.013 |
[65] | Li B, Dou ZM, Zhang L, et al. Ghrelin alleviates intestinal dysfunction in Sepsis through the KLF4/MMP2 regulatory axis by activating SIRT1[J]. Front Immunol, 2021, 12: 646775. DOI:10.3389/fimmu.2021.646775 |
[66] | Niu N, Xu SW, Xu YN, et al. Targeting mechanosensitive transcription factors in atherosclerosis[J]. Trends Pharmacol Sci, 2019, 40(4): 253-266. DOI:10.1016/j.tips.2019.02.004 |