2. 解放军总医院医学创新研究部转化医学研究中心,北京 100853;
3. 海军军医大学第一附属医院烧伤外科,上海 200433
2. Translational Medicine Research Center, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China;
3. Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
根据脓毒症(sepsis)最新定义,是指宿主对感染反应失调所致危及生命的器官功能障碍[1]。研究表明,脓毒症时固有免疫及适应性免疫均发生显著功能障碍[2],而树突细胞(dendritic cells,DCs)作为专职抗原递呈细胞,是连接固有免疫和适应性免疫的桥梁,其在脓毒症免疫应答障碍过程中具有重要地位。DCs在脓毒症状态下主要表现为数量减少、亚型比例变化及功能异常[3]。业已明确,脓毒症时DCs凋亡增加是导致上述变化的重要原因之一[4-5]。核糖体自噬(ribophagy)作为核糖体质量控制(ribosome quality control,RQC)的一种途径被定义为核糖体以自噬依赖的方式被选择性降解,其存在有利于维持核糖体周转量比与内环境相适应,进而促使细胞在应激条件下存活[6-7]。研究证实,NUFIP-1(nuclear FMRP interacting protein 1)是哺乳动物中介导核糖体自噬的关键受体,其在饥饿时从细胞核重新分布至核糖体,可被LC3B识别并介导核糖体自噬的发生[8]。本研究旨在探讨脂多糖(LPS)刺激模拟脓毒症状态下DCs细胞系DC2.4中NUFIP-1介导核糖体自噬的变化规律,并通过调控NUFIP-1基因表达进一步探究NUFIP-1介导核糖体自噬对DCs凋亡的影响及意义。
1 材料与方法 1.1 主要材料及试剂小鼠树突细胞系DC2.4购自北纳(河北)生物科技有限公司。NUFIP-1 siRNA干扰病毒及阴性对照病毒购自上海吉凯基因医学科技股份有限公司。LPS购自美国Sigma公司,兔抗小鼠NUFIP-1多克隆抗体购自美国Proteintech公司;鼠抗LC3B单克隆抗体、兔抗p62单克隆抗体、兔抗胱天蛋白酶(cleaved-caspase-3)多克隆抗体、兔抗Bcl-2单克隆抗体、兔抗荧光标记LC3B单克隆抗体、荧光标记羊抗兔IgG二抗均购自美国Cell Signaling Technology公司;溶酶体探针(lyso-tracker) 购自美国Thermo Fisher Scientific公司;藻红蛋白荧光素(PE)-Annexin V/7-AAD凋亡试剂盒购自美国BD公司。HRP辣根过氧化物酶标记羊抗兔二抗及羊抗鼠二抗、鼠抗β-actin、BCA蛋白定量试剂盒、超敏ECL化学发光试剂盒均购自北京华兴博创基因技术有限公司。
1.2 细胞培养及分组DC2.4培养于T25孔板,加入6~8 mL含15%胎牛血清(FBS)的RPMI 1640完全培养基中,置于37℃、5%CO2培养箱中,细胞正常生长,每1~2 d进行换液,长至细胞汇合度约为80%时进行传代。实验一:DC2.4复苏后培养并传代,得到足够细胞后进行分组,包括空白对照组及LPS刺激组,LPS刺激组给予1 μg/mL LPS分别处理6、12、24、48、72 h(n=5);实验二:将细胞分为空白对照组(Control组)、空白对照LPS(1 μg/mL)刺激组(LPS组),空载体组(NS组)、空载体LPS(1 μg/mL)刺激组(NS+LPS组)、沉默病毒组(siRNA组)、沉默病毒LPS (1 μg/mL)刺激组(siRNA+LPS组),LPS刺激组给予1 μg/mL LPS刺激24 h(n=3)。实验一用于NUFIP-1表达及核糖体自噬检测,实验二用于转染NUFIP-1沉默病毒和阴性对照病毒后细胞凋亡的检测。
1.3 Western blot检测DC2.4蛋白表达水平收集各组细胞并进行裂解,采用BCA法检测蛋白浓度。通过SDS-PAGE(聚丙烯酰胺)蛋白电泳使蛋白样本分离,使用湿转法转膜使蛋白转移至聚偏二氟乙烯膜(PVDF膜)上,然后置于快速封闭液室温封闭10 min,一抗(1∶1000) 4℃过夜、室温条件下孵育二抗(1∶5000)1 h,使用超敏ECL化学发光试剂盒进行显影,Image Quant LAS 4000凝胶成像系统观察、成像,Image J软件分析各组目的蛋白条带灰度值。
1.4 激光共聚焦显微镜观察NUFIP-1在细胞中表达、定位及其分别与Lyso-tracker和LC3B的共定位情况将不同组细胞按2×106/管收集于流式细胞管中,PBS清洗1次,4%多聚甲醛固定1 h以上,PBS清洗3次,0.3% Tritonx-100破膜15 min;PBS清洗3次,将一抗(1∶200)加入1% BSA中孵育过夜,PBS清洗3次,将荧光二抗(1∶200)加入1% BSA中室温孵育1 h,PBS清洗3次;将LC3B(1∶50)、Lyso-tracker(1∶200)加入1% BSA中孵育过夜,PBS清洗3次,将细胞重悬于60 μL PBS中,取35 μL细胞重悬液滴加在载玻片上,再滴加5 μL含封片剂的DAPI,盖上盖玻片。在倒置激光共聚焦显微镜下观察蛋白在细胞中定位及表达。
1.5 慢病毒感染将DC2.4复苏后按5×104/mL接种于6孔板中,参照重组慢病毒载体使用手册进行慢病毒感染,感染作用16 h后,更换完全培养基,继续培养,感染后72 h,使用激光显微镜观察感染效率,主要观察感染后DC2.4中病毒自带绿色荧光(GFP)的表达情况(图 3)。在最佳的感染条件下(MOI=100,其流式细胞分析术检测GFP阳性率均 > 90%),将以上细胞按1.2细胞培养及分组中实验二的分组方法进行分组(n=3),其中各LPS刺激组给予浓度为1 μg/mL的LPS刺激24 h。
1.6 流式细胞分析术检测DC2.4凋亡情况收集各组DC2.4,按2.5×105/管收集于流式细胞管,PBS清洗1次,缓冲液清洗1次,各管留100 μL缓冲液重悬细胞,按5 μL/管加入7-AAD和2.5 μL/管加入PE-Annexin V,避光室温孵育15 min,各管加入200 μL缓冲液重悬细胞,1 h内上机检测各组凋亡率。
1.7 统计学方法使用SPSS 22.0软件进行分析。计量资料以均数±标准差(x±s)表示,多组间分析采用单因素方差分析(one-way ANOVA),采用LSD-t法进一步进行组间两两比较,以P < 0.05为差异有统计学意义。
2 结果 2.1 LPS刺激下DC2.4中NUFIP-1及自噬相关蛋白变化规律与空白对照组比较,LPS刺激不同时间(6、12、24、48、72 h)后,DC2.4中NUFIP-1蛋白表达水平呈现先升高后下降趋势,其中LPS 24 h组NUFIP-1表达水平显著高于空白对照组[空白对照组:(0.6786 ± 0.0820);LPS 24 h组∶(1.4830 ± 0.1170), P < 0.01]。LPS刺激下DC2.4中p62蛋白表达水平呈现先下降后升高趋势,其中LPS 24 h组p62表达水平显著低于空白对照组[空白对照组:(0.9087 ± 0.1235);LPS 24 h组:(0.3113 ± 0.5571),P < 0.01]。与此同时,LPS刺激下DC2.4中LC3B-II表达水平与LC3B-I表达水平比值表现为先升高后下降,其中LPS 24 h组LC3B-I向LC3B-II的转化显著高于空白对照组[空白对照组:(0.5542 ± 0.1248);LPS 24 h组:(2.5310 ± 0.3119), P < 0.01],见图 1。
![]() |
图 1 LPS刺激下DC2.4中NUFIP-1及自噬相关蛋白表达情况(n=5) Fig 1 Expressions of NUFIP-1 and autophagy-related proteins in LPS-stimulated DC2.4 (n=5) |
|
激光共聚焦显微镜显示,DC2.4中NUFIP-1主要定位于细胞核及核周,LPS刺激后NUFIP-1荧光强度于6~24 h呈时间依赖性增强,而刺激48及72 h显著减弱。其中,LPS 24 h组其表达较空白对照组明显增强。同时,NUFIP-1与Lyso-tracker和LC3B的共定位在LPS刺激下逐渐增强,于LPS刺激24 h后达峰值,其在LPS 48及LPS 72 h组显著减弱,见图 2。
![]() |
图 2 LPS刺激下DC2.4中NUFIP-1与Lyso-tracker及LC3B的定位情况 Fig 2 Localization of NUFIP-1, Lyso-tracker and LC3B in LPSstimulated DC2.4 |
|
采用慢病毒感染技术感染NUFIP-1 siRNA可显著下调DC2.4中NUFIP-1表达水平,与空白对照组及空载体组比较,差异有统计学意义[空白对照组:(0.6627 ± 0.1707);空载体组:(0.6966 ± 0.1107);siRNA组:(0.1428 ± 0.0296),P < 0.05],见图 3。
![]() |
图 3 感染慢病毒对DC2.4中NUFIP-1蛋白表达的影响(n=5) Fig 3 Effect of lentivirus transfection on the expression of NUFIP-1 in DC2.4 (n=5) |
|
流式细胞学结果显示,NUFIP-1 siRNA感染组在LPS刺激24 h后较空白对照LPS 24 h组和空载体LPS 24 h组DC2.4凋亡率显著升高[空白对照LPS 24 h组:(47.91% ± 1.006%);空载体LPS 24 h组:(70.26% ± 1.011%);siRNA LPS 24 h组:(80.23% ± 2.094%),P < 0.01],见图 4。
![]() |
图 4 LPS刺激下不同慢病毒感染组中DC2.4凋亡率(n=3) Fig 4 Apoptotic rate of DC2.4 in different lentiviral transfected groups stimulated by LPS (n=3) |
|
蛋白印迹结果显示,NUFIP-1 siRNA感染组相较空白对照组及空载体组在LPS刺激下DC2.4中cleaved-caspase-3表达水平显著增高[空白对照LPS 24 h组:(0.4748 ± 0.0876);空载体LPS 24 h组:(0.2849 ± 0.0418);siRNA LPS 24 h组:(0.9733 ± 0.05252),P < 0.01],而抗凋亡蛋白Bcl-2表达则明显下调[空白对照LPS 24 h组:(0.7810 ± 0.0490);空载体LPS 24 h组:(0.8292 ± 0.0729);siRNA LPS 24 h组:(0.3957 ± 0.0838),P < 0.05],见图 5。
![]() |
图 5 LPS刺激下慢病毒感染对DC2.4凋亡相关蛋白的影响(n=3) Fig 5 Effects of lentivirus transfection on apoptosis-related proteins of DC2.4 stimulated by LPS (n=3) |
|
脓毒症是由感染引起的危及生命的器官功能障碍,具有发病率高、致死率高、预后不良等特点,是ICU患者的主要死亡原因之一[2]。越来越多的证据表明,免疫功能紊乱在脓毒症发病机制中具有核心地位,但关于脓毒症免疫功能障碍的确切分子机制及关键调控途径仍有待阐明[9]。而了解脓毒症状态下不同免疫细胞数量及功能改变有助于我们更好地理解脓毒症的病理生理过程,为改善其预后提供潜在契机[10]。DCs是体内重要的专职抗原呈递细胞,其在脓毒症状态下数量及功能均发生显著改变,主要表现为循环及淋巴器官中DCs数量下降,DCs抗原提呈能力下降[3]。脓毒症通过诱导DCs凋亡,抑制其成熟活化过程、减弱其对T淋巴细胞的抗原提呈能力,进而促成脓毒症免疫抑制微环境的形成[11]。已明确脓毒症相关免疫抑制与脓毒症患者病死率及继发感染事件增加密切相关[12-15]。在动物模型中,减少脓毒症诱导的DCs凋亡可有效提高脓毒症小鼠存活率,这与免疫刺激因子分泌的增加及T淋巴细胞激活相关[16-18]。
核糖体系细胞内数量最多的细胞器,是蛋白质合成的主要场所。核糖体自噬可特异性地识别和清除结构和(或)功能缺陷及数量过剩的核糖体,以维持其数量和功能与内环境相适应,进而参与蛋白质稳态的维持[8]。2008年Kraft等[6]研究发现,在特定生长环境下(如饥饿)酵母细胞中成熟的核糖体可以通过选择性自噬途径被降解。2018年Wyant等[9]发现了哺乳动物核糖体自噬的关键受体NUFIP-1,并证实NUFIP-1的缺失或其LIR序列突变均会降低细胞在饥饿时的生存能力。据报道,NUFIP-1介导的核糖体自噬通过维持细胞内蛋白质稳态促进细胞在应激状态下存活,而其功能障碍参与多种人类疾病的发生发展过程[19]。对脑卒中的研究提示,核糖体自噬可通过缓解过度的内质网应激减轻神经元损伤、减少神经元细胞凋亡,在脑卒中的发生发展过程中发挥重要作用[20-21]。上述资料提示,NUFIP-1介导的核糖体自噬可缓解神经元细胞凋亡,对于改善脑卒中患者预后具有潜在临床价值。鉴于核糖体自噬在维持细胞内蛋白质稳态中的重要作用及其与人类重大疾病的相关性,本研究率先探讨NUFIP-1介导核糖体自噬在脓毒症状态下DCs凋亡中的潜在作用,旨在揭示其免疫学效应,并为免疫调理提供新思路。
本研究显示,NUFIP-1在DC2.4中存在表达,且在1 μg/mL LPS刺激后其蛋白表达水平显著上调,以刺激后24 h最为明显。激光共聚焦显微镜结果显示,NUFIP-1主要表达于细胞核及核周,LPS刺激24 h后其荧光强度显著增强,与蛋白印迹结果一致。此外,NUFIP-1与Lyso-tracker及LC3B的共定位在LPS处理24 h组均呈现明显增强,提示在LPS作用下DC2.4核糖体自噬活性显著上调,于刺激后24 h达峰值。基于此,本研究重点分析了在LPS刺激24 h状态下干预NUFIP-1表达水平对DC2.4凋亡的影响。采用慢病毒感染技术对DC2.4感染siRNA及空载体,观察到NUFIP-1 siRNA感染组较空白对照组及空载体组可有效沉默NUFIP-1基因表达,下调NUFIP-1蛋白水平。同时,NUFIP-1 siRNA可加剧LPS诱导DC2.4凋亡,表现为凋亡率显著增加,凋亡相关蛋白cleaved-caspase-3表达水平显著升高,而抗凋亡蛋白Bcl-2表达水平明显下降。上述结果提示,NUFIP-1介导的核糖体自噬对LPS诱导DC2.4凋亡具有潜在保护效应。值得说明的是,本研究存在一定局限性,如未深入探究NUFIP-1介导核糖体自噬、缓解DCs凋亡的确切信号机制及其与脓毒症患者早期DCs数量减少的相关性。但本研究仅为阶段性工作,后续研究将进一步聚焦其具体信号转导途径,深入分析其作为调控脓毒症患者免疫抑制状态的潜在临床干预靶点的可能性。
本研究结果表明,DCs中NUFIP-1介导的核糖体自噬活性在脓毒症早期即被激活,沉默NUFIP-1基因后LPS诱导DC2.4凋亡显著增加,但其确切信号通路和关键调节环节亟待澄清。深刻认识脓毒症状态下NUFIP-1介导核糖体自噬对免疫细胞凋亡的影响与作用将为脓毒症免疫调理开辟新途径。
利益冲突 所有作者声明无利益冲突
作者贡献声明 郑丽玉、姚人骐:实验操作、论文撰写;董宁、吴瑶:数据收集及整理、统计学分析;姚咏明:研究设计、论文修改
[1] | Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for Sepsis and septic shock (Sepsis-3)[J]. JAMA, 2016, 315(8): 801-810. DOI:10.1001/jama.2016.0287 |
[2] | Hotchkiss RS, Moldawer LL, Opal SM, et al. Sepsis and septic shock[J]. Nat Rev Dis Primers, 2016, 2: 16045. DOI:10.1038/nrdp.2016.45 |
[3] | Venet F, Monneret G. Advances in the understanding and treatment of sepsis-induced immunosuppression[J]. Nat Rev Nephrol, 2018, 14(2): 121-137. DOI:10.1038/nrneph.2017.165 |
[4] | Kumar V. Dendritic cells in sepsis: potential immunoregulatory cells with therapeutic potential[J]. Mol Immunol, 2018, 101: 615-626. DOI:10.1016/j.molimm.2018.07.007 |
[5] | 李京宴, 田英平, 姚咏明. 铁死亡在坏死性炎症疾病中的作用及调控机制研究进展[J]. 中华急诊医学杂志, 2021, 30(5): 650-654. DOI:10.3760/cma.j.issn.1671-0282.2021.05.028 |
[6] | Kraft C, Deplazes A, Sohrmann M, et al. Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease[J]. Nat Cell Biol, 2008, 10(5): 602-610. DOI:10.1038/ncb1723 |
[7] | 郑丽玉, 姚人骐, 姚咏明. 核糖体相关质量控制与核糖体自噬研究进展[J/OL]. 生物化学与生物物理进展, 2022, 49: 1-11. DOI: 10.16476/j.pibb.2021.0270. |
[8] | Wyant GA, Abu-Remaileh M, Frenkel EM, et al. NUFIP1 is a ribosome receptor for starvation-induced ribophagy[J]. Science, 2018, 360(6390): 751-758. DOI:10.1126/science.aar2663 |
[9] | Rubio I, Osuchowski MF, Shankar-Hari M, et al. Current gaps in sepsis immunology: new opportunities for translational research[J]. Lancet Infect Dis, 2019, 19(12): e422-e436. DOI:10.1016/S1473-3099(19)30567-5 |
[10] | 张卉, 董宁, 姚咏明. 重症新型冠状病毒肺炎的免疫调理新策略[J]. 中华急诊医学杂志, 2022, 31(2): 135-139. DOI:10.3760/cma.j.issn.1671-0282.2022.02.001 |
[11] | Fan X, Liu Z, Jin H, et al. Alterations of dendritic cells in sepsis: featured role in immunoparalysis[J]. Biomed Res Int, 2015, 2015: 903720. DOI:10.1155/2015/903720 |
[12] | Delano MJ, Ward PA. The immune system's role in sepsis progression, resolution, and long-term outcome[J]. Immunol Rev, 2016, 274(1): 330-353. DOI:10.1111/imr.12499 |
[13] | Delano MJ, Ward PA. Sepsis-induced immune dysfunction: can immune therapies reduce mortality?[J]. J Clin Invest, 2016, 126(1): 23-31. DOI:10.1172/JCI82224 |
[14] | Bouras M, Asehnoune K, Roquilly A. Contribution of dendritic cell responses to Sepsis-induced immunosuppression and to susceptibility to secondary pneumonia[J]. Front Immunol, 2018, 9: 2590. DOI:10.3389/fimmu.2018.02590 |
[15] | Fattahi F, Ward PA. Understanding immunosuppression after sepsis[J]. Immunity, 2017, 47(1): 3-5. DOI:10.1016/j.immuni.2017.07.007 |
[16] | Luan YY, Yao YM, Xiao XZ, et al. Insights into the apoptotic death of immune cells in sepsis[J]. J Interferon Cytokine Res, 2015, 35(1): 17-22. DOI:10.1089/jir.2014.0069 |
[17] | Gautier EL, Huby T, Saint-Charles F, et al. Enhanced dendritic cell survival attenuates lipopolysaccharide-induced immunosuppression and increases resistance to lethal endotoxic shock[J]. J Immunol, 2008, 180(10): 6941-6946. DOI:10.4049/jimmunol.180.10.6941 |
[18] | Tinsley KW, Grayson MH, Swanson PE, et al. Sepsis induces apoptosis and profound depletion of splenic interdigitating and follicular dendritic cells[J]. J Immunol, 2003, 171(2): 909-914. DOI:10.4049/jimmunol.171.2.909 |
[19] | Zhao PY, Yao RQ, Zhang ZC, et al. Eukaryotic ribosome quality control system: a potential therapeutic target for human diseases[J]. Int J Biol Sci, 2022, 18(6): 2497-2514. DOI:10.7150/ijbs.70955 |
[20] | Carloni S, Albertini MC, Galluzzi L, et al. Increased autophagy reduces endoplasmic reticulum stress after neonatal hypoxia-ischemia: role of protein synthesis and autophagic pathways[J]. Exp Neurol, 2014, 255: 103-112. DOI:10.1016/j.expneurol.2014.03.002 |
[21] | Xu WL, Ocak U, Gao LS, et al. Selective autophagy as a therapeutic target for neurological diseases[J]. Cell Mol Life Sci, 2021, 78(4): 1369-1392. DOI:10.1007/s00018-020-03667-9 |