重症中暑(severe heat stroke)是一种危及生命的热致性疾病,可继发全身炎症反应,导致多器官功能障碍综合征,具有高病死率和高致残率的特点[1]。肠屏障是抵抗病原微生物的第一道屏障[2],重症中暑继发的肠黏膜损伤破坏了肠屏障功能,是驱动内毒素血症、全身炎症反应及多器官功能障碍综合征发生发展的关键因素[3]。然而,重症中暑导致肠黏膜损伤的分子机制仍未明确。当各种应激因素破坏内质网稳态诱导未折叠或错误折叠蛋白累积时,可诱导内质网应激。内质网应激的初衷是恢复细胞稳态,若损伤过重导致内质网应激过于强烈或持久则可激活细胞死亡途径[4]。肠黏膜上皮具有丰富的内质网结构,处理内质网应激的能力是决定肠道保持稳态抑或是发生病变的重要因素。内质网应激参与了炎症性肠病、肠道肿瘤等疾病的发生发展过程[5-6]。NOD样受体蛋白3(NOD-like receptor protein 3,NLRP3)是NOD样受体家族的重要成员,与接头蛋白和效应分子结合形成炎症小体参与宿主的免疫应答和多种疾病的病理生理过程。新近研究表明内质网应激能激活NLRP3炎症小体介导炎症反应[7],而炎症反应是重症中暑继发组织损伤的重要病理改变。内质网应激和NLRP3炎症小体活化是否参与了重症中暑导致的肠黏膜损伤目前鲜见报道。4-苯基丁酸(4-phenylbutyric acid,4-PBA)作为一种内质网应激抑制剂,可稳定肽链结构,加强内质网折叠能力并清除错误折叠蛋白。4-PBA现已用于临床治疗尿素循环障碍和镰状细胞病[8],并在多种疾病尤其是炎症性疾病的治疗中显示出潜在的应用前景[9]。在脓毒症休克大鼠模型中,4-PBA通过抑制内质网应激介导的炎症反应、细胞凋亡和氧化应激,保护重要脏器的功能[10]。还有研究表明,4-PBA可通过调节破骨细胞中的自噬防止脂多糖引起的炎症性骨质流失[11]。
本研究通过制备HS小鼠模型,观察内质网应激和NLRP3炎症小体的活化情况,使用4-PBA预处理抑制内质网应激,从而反向验证内质网应激在HS肠黏膜损伤中的作用,并观察4-PBA对HS肠黏膜损伤是否具有保护作用。
1 材料与方法 1.1 实验动物与试剂因雌激素可以通过改善中暑动物的全身炎症反应和心血管功能障碍从而提高生存率[12],故本实验采用雄性6~8周龄,体质量为(20.0±2.0)g的BALB/c小鼠,所有动物操作流程经湖南省人民医院伦理委员会批准。丙二醛(malondialdehyde,MDA)和超氧化物歧化酶(superoxide dismutase,SOD)试剂盒购自南京建成生物工程研究所;白介素-1β(interleukin-1β,IL-1β)及白介素-18(interleukin-18,IL-18)试剂盒购自武汉博士德生物工程有限公司;4-PBA购自美国Sigma公司;葡萄糖调节蛋白78(glucose regulated protein 78,GRP78)抗体、CCAAT/增强子结合蛋白同源蛋白(CCAAT/enhancer-binding protein homologous protein,CHOP)抗体购自美国CST公司;NLRP3抗体和含半胱氨酸的天冬氨酸蛋白水解酶-1(caspase-1)抗体购自美国Abcam公司。
1.2 重症中暑小鼠模型制备实验前小鼠于明暗交替(12 h光照/黑暗循环)的环境中适应性饲养一周,环境温度为(25.0±0.5)℃,环境湿度为(35.0±5.0)%,并允许其随意饮水和进食。小鼠随机(随机数字表法)分为对照(control)组、HS组和4-PBA预处理组(4-PBA+HS)。实验开始后,将HS组和4-PBA+HS组小鼠置于预热的高温气候动物培养箱中,温度保持于(35.5±0.5)℃,湿度保持于(60.0±5.0)%。4-PBA预处理组的小鼠在接受热暴露之前予以腹腔注射4-PBA 120 mg/kg [13]。而对照组的小鼠保持在环境温度为(25.0±0.5)℃,湿度为(35.0±5.0)%。用直肠温度计连续监测直肠核心温度(Tc)。前期的研究表明,当小鼠Tc达到42℃时,即成功建立了HS小鼠模型[14]。在Tc达到42℃后,小鼠接受复温处理。复温策略如下:将小鼠从高温气候动物培养箱中取出并在环境温度(25.0±0.5)℃和湿度(35.0±5.0)%的条件下冷却,允许小鼠自由饮水。前期的研究表明,HS小鼠的器官损伤程度随着复温时间的延长而加重,其平均存活时间约为造模成功后6 h[14]。因此,本实验的后续检测选择了该时间点。在复温处理6 h后,通过颈椎脱位处死所有小鼠,收集血清,采集回肠组织,用4 ℃ PBS冲洗,并储存于-80 ℃用于进一步研究。
1.3 检测肠组织匀浆氧化应激指标收集小鼠回肠组织,加入4 ℃ PBS制备成匀浆,在4 ℃条件下3 000 r/ min离心10 min,取上清液,按照试剂说明书检测MDA和SOD。
1.4 检测血清炎症因子收集小鼠血清,采用ELISA法检测血清IL-1β和IL-18水平,按照ELISA说明书进行操作。
1.5 观察肠道组织病理改变取临近回盲瓣的部分回肠,清洗肠内容物,进行组织固定、梯度脱水、石蜡包埋,继而制成5 μm切片,予以苏木精-伊红(hematoxylin-eosin,HE)染色,在光镜(Nikon,日本)下观察回肠组织病理学改变。
1.6 观察肠道超微结构回肠标本经固定、脱水、渗透、包埋、切片等处理后,予以铀铅双染色室温过夜,在透射电镜(Hitachi,日本)下进行观察肠道超微结构。
1.7 检测肠组织GRP78、CHOP、NLRP3和cleaved caspase-1蛋白的表达取小块回肠组织放入研钵,加入液氮,研磨至粉末状,加入RIPA裂解液冰上裂解,4 ℃低温离心机15 000 g离心30 min,取上清液采用二喹啉甲酸(bicinchoninic acid,BCA)法测定蛋白浓度。SDS-PAGE凝胶蛋白电泳,湿转法转膜。继而室温下将膜放置于5%脱脂奶溶液中封闭1 h,然后在4 ℃下与稀释的GRP78、CHOP、NLRP3、Caspase-1抗体孵育过夜。次日洗膜后用二抗孵育1 h。采用化学发光法显色,采用ImageJ图像分析系统进行条带灰度分析。
1.8 统计学方法使用SPSS 22.0软件进行统计分析,所有计量资料用均数±标准差(Mean±SD)表示。多组间比较如满足方差齐性采用单因素方差分析(ANOVA),组间两两比较采用LSD-t检验;如不满足方差齐性采用Welch分析,组间两两比较采用Dunnett's T3检验。以P < 0.05为差异有统计学意义。
2 结果 2.1 4-PBA降低重症中暑小鼠肠组织氧化应激水平MDA影响线粒体呼吸链复合物和线粒体内关键酶的活性,可反映组织过氧化损伤的程度。SOD可催化超氧化物阴离子的歧化作用,可反映机体清除自由基的能力。因此,小肠组织匀浆MDA和SOD常作为评估小肠组织氧化应激的指标[15]。与对照组相比,HS组MDA水平显著升高[(0.650±0.095)nmol/mg vs(1.572±0.169)nmol/mg,t=14.243,P < 0.01],而与HS组相比,4-PBA预处理组MDA水平明显下降[(0.979±0.159)nmol/mg vs(1.572±0.169)nmol/mg,t=9.167,P < 0.01];与对照组相比,HS组SOD水平明显下降[(87.821±17.859)U/mg vs(41.896±5.423)U/mg,t=7.781,P < 0.01],而与HS组相比,4-PBA预处理组SOD水平升高[(61.155±8.428)U/mg vs(41.896±5.423)U/mg,t=6.077,P < 0.01],见图 1。
![]() |
与control组相比,aP < 0.01;与HS组相比,bP < 0.01 图 1 各组小鼠回肠组织丙二醛、超氧化物歧化酶水平 Fig 1 MDA and SOD levels in ileum of mice in each group |
|
与对照组相比,HS组小鼠血清炎症因子IL-1β水平显著升高[(20.963±3.406)pg/mL vs(80.172±14.388)pg/mL,t=12.664,P < 0.01],而与HS组相比,4-PBA预处理组IL-1β水平明显下降[(54.034±8.877)pg/mL vs(80.172±14.388)pg/mL,t=4.889,P=0.001];与对照组相比,HS组小鼠血清炎症因子IL-18水平显著升高[(15.136 ±2.127)pg/mL vs(57.894±8.049)pg/mL,t=16.240, P < 0.01],而与HS组相比,4-PBA预处理组IL-18水平明显下降[(40.479±5.366)pg/mL vs(57.894±8.049)pg/mL,t=5.693,P < 0.01],见图 2。
![]() |
与control组相比,a P < 0.01;与HS组相比,b P < 0.01 图 2 各组小鼠血清白介素-1β和白介素-18的水平 Fig 2 Levels of IL-1β and IL-18 in serum of mice in each group |
|
回肠组织HE染色光镜下观察,对照组小肠结构正常;HS组小肠黏膜层明显变薄,小肠绒毛广泛脱落,伴有腺体缺失和炎症细胞浸润,固有层和黏膜层分离;4-PBA预处理组肠黏膜损伤明显减轻,小肠绒毛和肠道腺体基本完整,炎症细胞浸润减少,但杯状细胞可见轻度肿胀,见图 3。
![]() |
图 3 各组小鼠回肠组织病理改变(HE× 100) Fig 3 Pathological changes of ileum tissue of mice in each garoup (HE× 100) |
|
电镜观察各组小鼠肠黏膜上皮细胞,对照组小肠微绒毛整齐排列,内质网和线粒体等细胞器结构正常;HS组可见小肠微绒毛紊乱,内质网明显扩张,线粒体嵴消失,线粒体肿胀空泡化;4-PBA预处理组微绒毛排列较整齐,但比对照组短且稀疏,内质网结构接近正常,线粒体肿胀和空泡化减轻,见图 4。
![]() |
箭头1示内质网明显扩张,箭头2示线粒体肿胀空泡化 图 4 电镜观察小鼠肠黏膜上皮细胞超微结构(× 5 000) Fig 4 The ultrastructure of intestinal mucosa of mice under transmission electron microscope observation (× 5 000) |
|
通过Western blot测定内质网应激和NLRP3炎症小体活化相关蛋白的表达水平。与对照组相比,HS组内质网应激相关蛋白GRP78表达明显升高(t=14.824,P < 0.01),与HS组相比,4-PBA预处理组GRP78蛋白表达明显降低(t=9.080,P < 0.01)。与对照组相比,HS组内质网应激相关蛋白CHOP表达明显升高(t=12.667,P < 0.01),与HS组相比,4-PBA预处理组CHOP蛋白表达明显降低(t=7.152,P < 0.01)。与对照组相比,HS组NLRP3蛋白表达明显上调(t=9.298,P < 0.01),与HS组相比,4-PBA预处理组NLRP3蛋白表达则显著下调(t=4.249,P=0.005)。与对照组相比,HS组cleaved caspase-1蛋白表达明显上调(t=6.588,P=0.001),与HS组相比,4-PBA预处理组cleaved caspase-1蛋白表达显著下调(t=3.650,P=0.011),见图 5。
![]() |
A: GRP78、CHOP、NLRP3和cleaved Caspase-1蛋白条带图;B~E: GRP78、CHOP、NLRP3和cleaved caspase-1的蛋白相对表达水平。柱状图显示目的蛋白相对于β-actin的灰度值比值,并以对照组标准化;与control组相比,aP < 0.01;与HS组相比,bP < 0.01; 与HS组相比,cP < 0.05 图 5 Western blot检测GRP78、CHOP、NLRP3和cleaved caspase-1蛋白表达 Fig 5 The protein expression of GRP78, CHOP, NLRP and cleaved caspase-1 detected by Western blot |
|
在正常环境下肠黏膜上皮、肠道微生物和肠内免疫系统之间紧密结合并相互作用,对于维持宿主健康起着至关重要的作用。人类在高温环境下中暑后,可导致肠黏膜损伤、肠道细菌移位及内毒素血症[16]。重症中暑免疫功能障碍参与肠黏膜损伤引起的病原体内侵[17],且肠黏膜损伤程度与全身炎症反应和中暑严重程度密切相关[18]。但重症中暑导致肠黏膜损伤继发炎症反应的分子机制尚未阐明。
NLRP3是备受关注的NOD样受体家族成员之一,NLRP3被病原体相关分子模式或损伤相关分子模式激活后可与凋亡相关斑点样蛋白及caspase-1前体组装形成炎症小体。Caspase-1前体暴露出特殊的酶切位点,通过自身剪切形成具有催化活性的caspase-1,将无活性的IL-1β前体和IL-18前体剪切成具有促炎活性的IL-1β和IL-18,并介导特殊类型的程序性细胞死亡即焦亡[19]。近年来NLRP3被认为和炎症性肠病、肠道肿瘤的发病密切相关[20],而重症中暑继发的肠黏膜损伤及炎症反应是否和NLRP3相关目前鲜有研究报道。本研究发现重症中暑小鼠肠黏膜损伤严重,表现为小肠绒毛脱落、腺体缺失和炎症细胞浸润,肠上皮细胞内重要细胞器如内质网和线粒体被破环。此外,小肠组织NLRP3、cleaved caspase-1表达增加,并伴有血清IL-1β和IL-18水平显著升高,提示重症中暑可以诱导NLRP3炎症小体的活化并刺激大量炎症因子的释放。
本研究还发现在高热打击下,内质网应激和NLRP3炎症小体的活化密切相关。重症中暑小鼠小肠上皮细胞内质网呈明显扩张状,且小肠组织GRP78、CHOP蛋白表达增高,其中GRP78是内质网应激被激活的标志,而CHOP是内质网应激从促进细胞生存转向诱导细胞死亡的标志[21]。上述结果提示重症中暑诱导了内质网应激。而内质网应激抑制剂4-PBA预处理除了可显著降低内质网应激相关蛋白表达水平以外,还可以显著降低NLRP3、cleaved caspase-1蛋白表达水平,并且显著减少了炎症因子的释放,提示抑制内质网应激可抑制NLRP3炎症小体的活化,反向说明了内质网应激可能诱导NLRP3炎症小体活化。内质网应激是调控NLRP3炎症小体活化的新机制,该研究领域近年来备受关注。在静息条件下,NLRP3位于内质网膜和细胞质,凋亡相关斑点样蛋白位于线粒体和细胞核[22]。而在应激条件下,NLRP3和凋亡相关斑点样蛋白定位在线粒体相关内质网膜并进一步组装和活化,而该结构是内质网膜与线粒体外膜紧密连接的特化部分[23]。此外,内质网应激诱导的未折叠蛋白反应信号通路可与炎症通路交互作用从而激活NLRP3炎症小体[24]。但内质网应激诱导NLRP3炎症小体活化的具体机制仍不明确。
根据文献报道,氧化应激和活性氧的过度生成是驱动NLRP3炎症小体活化和炎症反应的关键因素[25]。而强烈的内质网应激可通过不同方式诱导氧化应激和活性氧的产生。内质网应激重要的效应分子CHOP可通过转录内质网氧化还原酶1α诱导活性氧的生成[26]。此外,内质网应激可驱动钙离子通过线粒体相关内质网膜结构转移至线粒体内,引起线粒体钙超载,继而生成大量的活性氧[27]。本研究发现,重症中暑小鼠肠道匀浆MDA水平升高而SOD水平下降,提示过氧化损伤明显,氧自由基清除能力下降,表明重症中暑诱导了肠道氧化应激反应;而4-PBA预处理可显著减轻这一氧化应激反应。该结果说明高热条件下内质网应激可诱导氧化应激。因此,笔者推测氧化应激可能是内质网应激诱导NLRP3炎症小体活化的关键。
然而,本研究存在一定的局限性。肠黏膜损伤造成肠屏障的破坏,但本研究未进行肠屏障功能的评估;本研究只设置了4-PBA预处理组,并未设置热打击造模后4-PBA处理组,因此无法明确4-PBA后处理对肠黏膜损伤的保护作用。在后续的研究中,拟进一步探究内质网应激与NLRP3炎症小体激活是否通过氧化应激实现,并明确其信号传导途径及具体调控机制。
综上所述,内质网应激和NLRP3炎症小体活化参与重症中暑肠黏膜损伤,4-PBA可通过抑制内质网应激及NLRP3炎症小体活化介导的炎症反应发挥保护作用,充分了解内质网应激和NLRP3炎症小体之间的关联机制可能为重症中暑提供新的治疗靶点。
利益冲突 所有作者均声明不存在利益冲突
[1] | Chen K, Huang L, Zhou L, et al. Spatial analysis of the effect of the 2010 heat wave on stroke mortality in Nanjing, China[J]. Sci Rep, 2015, 5(1): 1-11. DOI:10.1038/srep10816 |
[2] | Otani S, Coopersmith CM. Gut integrity in critical illness[J]. J Intensive Care, 2019, 7: 17. DOI:10.1186/s40560-019-0372-6 |
[3] | Armstrong LE, Lee EC, Armstrong EM. Interactions of gut microbiota, endotoxemia, immune function, and diet in exertional heatstroke[J]. J Sports Med (Hindawi Publ Corp), 2018, 2018: 5724575. DOI:10.1155/2018/5724575 |
[4] | Coleman OI, Haller D. ER stress and the UPR in shaping intestinal tissue homeostasis and immunity[J]. Front Immunol, 2019, 10: 2825. DOI:10.3389/fimmu.2019.02825 |
[5] | Ma X, Dai Z, Sun K, et al. Intestinal epithelial cell endoplasmic reticulum stress and inflammatory bowel disease pathogenesis: an update review[J]. Front Immunol, 2017, 8: 1271. DOI:10.3389/fimmu.2017.01271 |
[6] | Coleman OI, Lobner EM, Bierwirth S, et al. Activated ATF6 induces intestinal dysbiosis and innate immune response to promote colorectal tumorigenesis[J]. Gastroenterology, 2018, 155(5): 1539-1552. e12. DOI:10.1053/j.gastro.2018.07.028 |
[7] | Li W, Cao T, Luo C, et al. Crosstalk between ER stress, NLRP3 inflammasome, and inflammation[J]. Appl Microbiol Biotechnol, 2020, 104(14): 6129-6140. DOI:10.1007/s00253-020-10614-y |
[8] | de Almeida Almeida SF, Picarote G, Fleming JV, et al. Chemical chaperones reduce endoplasmic reticulum stress and prevent mutant HFE aggregate formation[J]. J Biol Chem, 2007, 282(38): 27905-27912. DOI:10.1074/jbc.m702672200 |
[9] | Kolb PS, Ayaub EA, Zhou W, et al. The therapeutic effects of 4-phenylbutyric acid in maintaining proteostasis[J]. Int J Biochem Cell Biol, 2015, 61: 45-52. DOI:10.1016/j.biocel.2015.01.015 |
[10] | Liu L, Wu H, Zang J, et al. 4-phenylbutyric acid reveals good beneficial effects on vital organ function via anti-endoplasmic reticulum stress in septic rats[J]. Crit Care Med, 2016, 44(8): e689-e701. DOI:10.1097/ccm.0000000000001662 |
[11] | Park HJ, Son HJ, Sul OJ, et al. 4-Phenylbutyric acid protects against lipopolysaccharide-induced bone loss by modulating autophagy in osteoclasts[J]. Biochem Pharmacol, 2018, 151: 9-17. DOI:10.1016/j.bcp.2018.02.019 |
[12] | Chen SH, Chang FM, Niu KC, et al. Resuscitation from experimental heatstroke by estrogen therapy[J]. Crit Care Med, 2006, 34(4): 1113-1118. DOI:10.1097/01.ccm.0000205756.04845.15 |
[13] | Kusama H, Kon K, Ikejima K, et al. Sodium 4-phenylbutyric acid prevents murine acetaminophen hepatotoxicity by minimizing endoplasmic reticulum stress[J]. J Gastroenterol, 2017, 52(5): 611-622. DOI:10.1007/s00535-016-1256-3 |
[14] | Su L. Intestinal inflammation and tissue injury in response to heat stress and cooling treatment in mice[J]. Mol Med Rep, 2011, 4(3): 437-443. DOI:10.3892/mmr.2011.461 |
[15] | Amin MM, Rafiei N, Poursafa P, et al. Association of benzene exposure with insulin resistance, SOD, and MDA as markers of oxidative stress in children and adolescents[J]. Environ Sci Pollut Res Int, 2018, 25(34): 34046-34052. DOI:10.1007/s11356-018-3354-7 |
[16] | Snipe RMJ, Khoo A, Kitic CM, et al. The impact of exertional-heat stress on gastrointestinal integrity, gastrointestinal symptoms, systemic endotoxin and cytokine profile[J]. Eur J Appl Physiol, 2018, 118(2): 389-400. DOI:10.1007/s00421-017-3781-z |
[17] | 洪欣欣, 刘喆滢, 高经华, 等. 重症中暑免疫功能障碍的研究进展[J]. 中华急诊医学杂志, 2021, 30(1): 123-127. DOI:10.3760/cma.j.issn.1671-0282.2021.01.026 |
[18] | Xia ZN, Zong Y, Zhang ZT, et al. Dexmedetomidine protects against multi-organ dysfunction induced by heatstroke via sustaining the intestinal integrity[J]. Shock, 2017, 48(2): 260-269. DOI:10.1097/shk.0000000000000826 |
[19] | Liu X, Zhang Z, Ruan J, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores[J]. Nature, 2016, 535(7610): 153-158. DOI:10.1038/nature18629 |
[20] | Man SM. Inflammasomes in the gastrointestinal tract: infection, cancer and gut microbiota homeostasis[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(12): 721-737. DOI:10.1038/s41575-018-0054-1 |
[21] | Hu H, Tian MX, Ding C, et al. The C/EBP homologous protein (CHOP) transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection[J]. Front Immunol, 2019, 9: 3083. DOI:10.3389/fimmu.2018.03083 |
[22] | Chen X, Guo X, Ge Q, et al. ER stress activates the NLRP3 inflammasome: a novel mechanism of atherosclerosis[J]. Oxid Med Cell Longev, 2019, 2019: 3462530. DOI:10.1155/2019/3462530 |
[23] | Yabal M, Calleja DJ, Simpson DS, et al. Stressing out the mitochondria: Mechanistic insights into NLRP3 inflammasome activation[J]. J Leukoc Biol, 2019, 105(2): 377-399. DOI:10.1002/jlb.mr0318-124r |
[24] | Zhou Y, Tong ZZ, Jiang SH, et al. The roles of endoplasmic reticulum in NLRP3 inflammasome activation[J]. Cells, 2020, 9(5): 1219. DOI:10.3390/cells9051219 |
[25] | Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics[J]. Nat Rev Immunol, 2019, 19(8): 477-489. DOI:10.1038/s41577-019-0165-0 |
[26] | Ochoa CD, Wu RF, Terada LS. ROS signaling and ER stress in cardiovascular disease[J]. Mol Aspects Med, 2018, 63: 18-29. DOI:10.1016/j.mam.2018.03.002 |
[27] | Victor P, Sarada D, Ramkumar KM. Crosstalk between endoplasmic reticulum stress and oxidative stress: Focus on protein disulfide isomerase and endoplasmic reticulum oxidase 1[J]. Eur J Pharmacol, 2021, 892: 173749. DOI:10.1016/j.ejphar.2020.173749 |