中华急诊医学杂志  2020, Vol. 29 Issue (6): 810-814   DOI: 10.3760/cma.j.issn.1671-0282.2020.06.014
安体舒通对脓毒症大鼠心肌损伤保护作用
高东岳 , 代会 , 费爱华     
上海交通大学医学院附属新华医院急诊科,上海 200092
摘要: 目的 研究安体舒通对脓毒症大鼠心肌损伤的保护作用,为脓毒症心肌损伤的诊治提供新措施。方法 120只雄性Sprague-Dawley大鼠随机(随机数字法)分为3组:假手术组、盲肠结扎穿孔(cecal ligation and perforation, CLP)组、安体舒通组。假手术组大鼠仅施行开腹暴露盲肠并还纳,CLP组和安体舒通组行脓毒症造模,结扎盲肠穿孔并挤出肠内容物后还纳腹腔缝合。安体舒通组以灌胃形式给予安体舒通[20 mg/(kg·d)],假手术组和CLP组给予同等剂量的生理盐水,观察7 d,处死大鼠后采血并取出心肌组织。采用ELISA法分别检测大鼠血清中肿瘤坏死因子-α(tumor necrosis factor-α TNF-α、白介素-6(interleukin-6, IL-6)、心肌肌钙蛋白I(cardiac troponin I, cTnI)及肌酸激酶同工酶MB(creatine kinase-MB, CK-MB)含量变化;心脏超声检测大鼠心脏结构及功能;TUNEL染色检测大鼠左心室肌细胞相对凋亡数量;免疫组织化学检测大鼠左心室TNF-α、IL-6、Bax(bcl2-associated X protein)、Bcl2(B cell lymphoma 2)和Caspase3表达水平。结果 与CLP组大鼠相比,安体舒通组大鼠血清及心室肌组织中TNF-α和IL-6含量显著减少(P < 0.05);血清中cTnI及CK-MB含量明显降低(P < 0.05);心率(heart rate, HR)、左心室舒张内径(left ventricular diastolic dimension, LVDd)显著降低(P < 0.05),射血分数(ejection fraction, EF)、左室短轴缩短率(left ventricular fractional shortening, FS)明显增加(P < 0.05);心室肌凋亡改善(P < 0.05),凋亡相关蛋白Bcl2明显增加(P < 0.05),Bax和Caspase3表达明显下调(P < 0.05)。CLP组大鼠Bcl2蛋白表达、EF及FS较假手术组明显降低(P < 0.05),余指标显著高于假手术组(P < 0.05)。结论 安体舒通能够通过减轻脓毒症引起的炎症反应,减轻心肌受损,缓解心室肌凋亡,改善心室结构及功能,治疗脓毒症心肌损伤。
关键词: 脓毒症    脓毒症心肌损伤    安体舒通    炎症    肿瘤坏死因子-α    白介素-6    心肌凋亡    心脏结构    心功能    
The protective effect of spironolactone on myocardial injury in septic rats
Gao Dongyue , Dai Hui , Fei Aihua     
Emergency Department, Xinhua Affi liated Hospital of Shanghai JiaoTong University School of Medicine, Shanghai, 200092, China
Abstract: Objective To investigate the protective effect of spironolactone on myocardial injury in septic rats and to provide a novel measure for the diagnosis and treatment of sepsis myocardial injury. Methods Totally 120 male Sprague-Dawley rats were randomly divided into the sham group, cecal ligation and perforation group (CLP group), and spironolactone group. The sham group was only exposed to the cecum by laparotomy. CLP was performed to induce sepsis in the CLP group and spironolactone group. The cecal perforation was ligated and the contents of the intestine were squeezed out. The spironolactone group was administered spironolactone by gavage with a dose of 20 mg/(kg·d) per rat. The sham and CLP groups were given the same dose of saline. The experiment period was 7 days. After the rats were sacrifi ced, blood was collected and myocardial tissue was removed. The changes of serum TNF-α, IL-6, cTnI and CK-MB levels were detected by ELISA. Cardiac structure and function were detected by echocardiography. The relative apoptosis of left ventricular myocytes in rats was detected by TUNEL staining. The levels of TNF-α, IL-6, Bcl2- associated X protein (Bax), B cell lymphoma 2 (Bcl2) and Caspase 3 in the left ventricle tissue were detected by immunohistochemistry. Results Compared with the CLP group, the levels of TNF-α and IL-6 in serum and left ventricular tissue were signifi cantly decreased (P < 0.05) and serum levels of cTnI and CK-MB were signifi cantly down-regulated (P < 0.05). Heart rate (HR) and left ventricular diastolic dimension (LVDd) were signifi cantly reduced (P < 0.05), and ejection fraction (EF) and left ventricular fractional shortening (FS) increased signifi cantly (P < 0.05). Ventricular muscle apoptosis was improved (P < 0.05), the level of apoptosis-related protein Bcl2 was increased and the Bax and Caspase3 expression were signifi cantly down-regulated (P < 0.05).The expression of Bcl2 protein, EF and FS in the CLP group were signifi cantly lower than those in the sham group(P < 0.05), and the remaining indexes were signifi cantly higher than those in the sham group(P < 0.05). Conclusion Spironolactone can treat sepsisinduced myocardial injury by reducing infl ammatory response caused by sepsis, reducing myocardial damage, alleviating ventricular muscle apoptosis, and improving ventricular structure and function.
Key words: Sepsis    Septic myocardial injury    Spironolactone    Inflammation    TNF-α    IL-6    Myocardial apoptosis    Cardiac structure    Cardiac functionin    

脓毒症是由感染引起的免疫反应失调,从而导致危及生命的多器官功能衰竭,是ICU的主要死亡原因,脓毒症相关病死率为高达29.9% [1-3]。在世界范围内,与败血症相关的发病率和病死率继续攀升[4-5]。当多器官功能衰竭累及心脏时,影响心脏舒张和收缩功能,称为脓毒症心肌损伤,可增加脓毒症患者病死率[6-7]。脓毒症心肌损伤的发病机制十分复杂。安体舒通是一类人工合成的甾体类盐皮质激素拮抗剂,最初在临床上作为一种保钾利尿剂使用。随后的研究发现安体舒通具有抗炎效应[8],并被临床应用于脉络膜视网膜病和类风湿关节炎、自身免疫性甲状腺炎等相关炎症的治疗中[9-10]。因此推测安体通舒通能够通过抑制脓毒症炎症反应从而减轻其造成的心肌损伤。本实验以大鼠盲肠结扎穿孔术模拟脓毒症大鼠模型,并予以安体舒通干预,观察安体舒通对脓毒症炎症反应及脓毒症心肌损伤的作用。

1 材料与方法 1.1 材料及仪器

健康成年雄性SPF级Sprague-Dawley大鼠120只(购自中国科学院上海实验动物中心,许可证:SCXK(沪)2017-0005),体质量160 ~ 180 g。ELISA试剂盒由中国上海蓝基生物科技有限公司提供。苏木精-伊红(HE)染色试剂盒购自中国上海歌凡生物科技有限公司。免疫组织化学染色试剂盒和DAB试剂盒购自赛默飞世尔(中国)。安体舒通由中国上海抚生实业有限公司提供(批号:100193-199601)。抗体由中国武汉爱博泰克生物科技有限公司提供。TUNEL细胞凋亡检测试剂盒由中国上海生工生物工程股份有限公司提供。

1.2 分组与动物模型构建

随机(随机数字法)分为3组:假手术组、盲肠结扎穿孔(cecal ligation and perforation, CLP)组、安体舒通组。大鼠术前禁食12 h,称质量,常规皮肤消毒并麻醉,术中严格无菌操作。假手术组:大鼠仅施行开腹取出盲肠并还纳腹腔缝合;CLP组:采用盲肠结扎穿孔法进行脓毒症大鼠造模:开腹取出盲肠后,于0.5 mL盲肠体积处穿孔并挤出少许内容物后还纳腹腔;安体舒通组:在盲肠结扎穿孔的基础上给予安体舒通[20 mg/(kg·d))]灌胃,连续7 d,其余两组分别同时给予等量生理盐水作安慰剂对照;各组大鼠于第0天和第7天行内眦静脉取血2 mL,第7天时取大鼠左心室肌组织。

1.3 酶联免疫吸附试验

将各组大鼠血清进行离心(3 500 r/min,15 min),取上清液。分别向肿瘤坏死因子-α(tumor necrosis factor-α, TNF-α)、白介素-6(interleukin-6, IL-6)、心肌肌钙蛋白I(cardiac troponin I, cTnI)及肌酸激酶同工酶MB(creatine kinase-MB, CK-MB)的相应酶标板中加入标准品及血清样品,37 ℃孵育1 h,后先后加入显色液、终止液,用酶标仪测定相关指标浓度,利用相关软件计算分析数值。

1.4 心脏超声检测

大鼠麻醉后备皮,利用心脏彩色多普勒超声系统(Philips CX50,S12-4)检测心脏结构及功能指标:左心室舒张内径(left ventricular diastolic dimension, LVDd),左心室收缩内径(left ventricular systolic dimension, LVDs)射血分数(ejection fraction, EF)、左室短轴缩短率(left ventricular fractional shortening, FS),并记录数值。

1.5 TUNEL法检测凋亡心肌细胞

石蜡包埋大鼠左心室组织后切片。将切片置于染色缸中,滴加含2%过氧化氢的PBS,室温反应5 min。将TdT酶滴于切片表面,置于37 ℃湿盒内反应1 h。使用PBS洗涤组织切片3次,将两滴含有过氧化物酶标记的地高辛抗体滴加于切片上,湿盒中室温孵育30 min。将DAB显色液滴加于组织切片上,室温显色6 min,甲基绿复染10 min。脱水并使用中性胶封片,于光镜下观察并记录。

1.6 免疫组织化学

石蜡包埋大鼠左心室组织后切片。脱蜡、水化后PBS漂洗3遍,与3% H2O2室温反应10 min。将组织切片置于沸腾的PBS缓冲液中加热20 min,PBS漂洗3次,山羊血清封闭15 min。滴加相应一抗(TNF-a、IL-6、Bax(bcl2-associated X protein),Bcl2(B cell lymphoma 2)和Caspase3),4 ℃孵育过夜,PBS洗3次。滴加二抗,室温孵育2 h。将切片置于光镜下,加入DAB显色剂,反应20 min。光镜下,苏木精复染10 s,自来水冲洗。脱水并使用中性胶封片,于光镜下观察并记录。

1.7 统计学方法

应用SPSS 20.0统计学软件,计量资料以均数±标准差(Mean±SD)表示,多个组比较采用单因素方差分析,以P < 0.05为差异有统计学意义。

2 结果 2.1 脓毒症大鼠血清和心室肌组织中TNF-a和IL-6含量

与假手术组大鼠相比,CLP组大鼠血清及心室肌组织中TNF-a和IL-6含量显著增加(P < 0.05)。相比CLP组大鼠,安体舒通组大鼠血清及心室肌组织中TNF-a和IL-6含量明显降低(P < 0.05),见图 1

A:三组大鼠第0 d和第7 d血清TNF-α和IL-6表达水平的变化。B, C :三组大鼠心室肌TNF-α和IL-6免疫组织化学检测。与假手术组比较, aP<0.05;与CLP组比较, bP<0.05 图 1 生化检测评价血清及心肌组织TNF-α和IL-6含量 Fig 1 Biochemical analysis for serum and myocardial tissue TNF-α and IL-6 levels
2.2 脓毒症大鼠血清中CK-MB和cTnI含量

通过ELISA法测得的安体舒通组大鼠血清中CK-MB和cTnI含量较CLP组大鼠明显下降(P < 0.05)。CLP组大鼠上述指标显著高于假手术组(P < 0.05),见表 1

表 1 生化检测评价血清CK-MB和cTnI含量 Table 1 Biochemical analysis of serum CK-MB and cTnI levels
组别 天数(d) CK-MB (mg/L) cTnI (mg/L)
假手术组 7 286.00±65.44 0.40±0.11
CLP组 7 956.90±129.00a 1.842±0.29a
安体舒通组 7 610.40±106.60b 1.176±0.14b
注:与假手术组相比,aP<0.05;与CLP组相比,bP<0.05
2.3 脓毒症大鼠心脏结构及功能

心脏超声结果发现,相比CLP组大鼠,安体舒通组大鼠的HR、LVDd显著降低(P < 0.05),EF、FS明显增加(P < 0.05),LVDs有降低趋势,但未达统计学意义。与假手术组大鼠相比,CLP组大鼠HR、LVDd、LVDs显著增加(P < 0.05),EF、FS明显下降(P < 0.05),见表 2

表 2 心脏超声评价心脏结构和功能 Table 2 Echocardiographic evaluation of cardiac structure and function
指标 假手术组 CLP组 安体舒通组
Heart rate(次/min) 408±18.87 459.4±12.99a 434.4±11.59b
LVDd(mm) 6.242±0.13 6.726±0.18a 6.428±0.13b
LVDs(mm) 3.414±0.08 4.32±0.11a 4.168±0.13
EF(%) 75±4.00 65.4±3.50a 70.8±1.92b
FS(%)45.4±3.21 33.6±2.41a 39.6±2.30b
注:与假手术组相比,aP<0.05;与CLP组相比,bP<0.05
2.4 安体舒通减少心室肌组细胞凋亡

TUNEL染色及免疫组织化学结果显示:相比CLP组大鼠,安体舒通组大鼠心室肌细胞凋亡明显缓解(P < 0.05),凋亡相关蛋白Bcl2明显增加(P < 0.05),Bax和Caspase3表达明显下调(P < 0.05)。CLP组大鼠凋亡相关蛋白Bcl2显著下降,余指标明显高于假手术组(P < 0.05)(图 2)。

A:大鼠心室肌TUNEL染色。B:大鼠心肌凋亡相关蛋白表达情况。与假手术组相比:aP<0.05;与CLP组相比,bP<0.05 Immunohistochemistry 图 2 TUNEL和免疫组织化学检测评价心室肌凋亡改变 Fig 2 Ventricular myocyte apoptosis was measured by TUNE and Immunohistochemistry
3 讨论

脓毒症心肌损的发病机制十分复杂,各个发病因素之间通常关系密切、互为因果。例如,炎症造成的心肌损伤会导致心肌细胞凋亡,而凋亡裂解后的心肌细胞释放出的胞内物质又会造成新的炎症反应,从而造成恶性循环。受损的心肌会加重心功能的损伤,导致心输出量降低、组织灌注下降和脓毒性休克。目前,临床上对于脓毒症心肌损伤的治疗主要以抗感染、对症和支持治疗为主。

脓毒症时炎症因子TNF-α和IL-6大量释放[11],而TNF-α和IL-6介导的多种炎症反应通路的激活是导致心肌损伤的主要原因之一[12-13]。TNF-a广泛参与炎症反应各个损伤通路的激活,同时能够诱导心肌凋亡,在体外能够直接抑制心肌的收缩性[14]。TNF-a介导心肌损伤主要是通过TNF-α Ⅰ型受体激活核因子-κB(nuclear factor-κB, NF-κB)来完成的,NF-κB能通过诱导白细胞介素(interleukin, IL)的表达启动新的心肌损伤通路,其诱导产生的IL-6能够增强免疫细胞黏附和穿出血管壁的能力,促进炎症早期的淋巴细胞富集[15-17]。IL-6在减弱NO生物学活性的同时增加超氧化物的水平和单核细胞趋化蛋白-1 (monocyte chemotactic protein 1, MCP-1)的表达,并通过与细胞膜表面糖蛋白130 (glycoprotein 130, gp 130)的结合,激活下游炎症反应通路JAK-STAT3和MAP(JAK-SHP-2-mitogen– activated protein)通路,诱发新的炎症反应,对心肌细胞造成新的损伤[18]。本研究发现,与假手术组大鼠相比,CLP组大鼠血清及心室肌组织中IL-6和TNF-α含量显著增加(P < 0.05),心肌损伤指标(CK-MB和cTnI)含量亦明显增加(P < 0.05)。同时发现,HR、LVDd、LVDs显著增加(P < 0.05),EF、FS明显下降(P < 0.05),表明脓毒症心肌损伤进一步导致了心功能受损。证实脓毒症时释放出的大量炎性因子(IL-6和TNF-a)是导致脓毒症心肌损伤的主要原因之一。

脓毒症造成心肌凋亡的主要途径有两种,一种是由TNF-a介导的细胞外途径,另一种则是由细胞色素c (cytochrome c, cyt-c)介导的细胞内途径。细胞外途径由TNF-a与TNF-α Ⅰ型受体结合,并招募Fas相关死亡结构域和Caspase-8蛋白原,二者形成死亡诱导信号复合体(deathinducing signaling complex, DISC),导致Caspase-3, -6, -7的激活,从而诱导心肌细胞的凋亡。细胞内途径由线粒体游离的cyt-c激活Caspase-3信号通路而引起,而Bcl2蛋白能够通过抑制cyt-c和凋亡诱导因子的释放来抑制细胞凋亡。作为Bcl2蛋白亚家族之一的Bax蛋白,能够通过自身过表达形成Bax/Bax同源二具体并启动细胞凋亡,当Bcl2蛋白高表达时可竞争性结合Bax蛋白,形成的Bcl2/Bax异源二聚体能够阻止Bax/Bax启动的细胞凋亡。心肌细胞凋亡可进一步促进脓毒症心肌损伤。本实验结果发现,相比假手术组大鼠,CLP组大鼠心室肌细胞凋亡明显增加(P < 0.05),同时凋亡相关蛋白Bcl2明显下调(P < 0.05),Bax和Caspase3表达明显增加(P < 0.05)。证实了脓毒症时炎症因子可导致心肌细胞凋亡增加,促进了脓毒症心肌损伤的发生发展。

安体舒通在体内的两种分解产物7 α-甲硫基-安体舒通和烯睾丙内酯能够与醛固酮竞争性结合MRs。多项研究证实安体舒通具有抗炎效应并能够发挥心肌保护作用。在链脲霉素(streptozotocin, STZ)引起的大鼠糖尿病心肌病模型中,安体舒通能够减轻STZ引起的心肌组织超微结构变化,并保护线粒体超微结构。同时,安体舒通能够保护心肌细胞粗面内质网,减轻钙离子代谢异常。安体舒通能够通过多种机制发挥抗炎效应,并已被应用于临床治疗当中。安体舒通通过阻断醛固酮与MRs的结合抑制MRs介导的炎症反应,同时能够降低脓毒症大鼠体内TNF-a和NF-κB的表达水平,从而达到抗炎的目的。安体舒通还能通过非MRs依赖途径抑制炎症反应。安体舒通通过降低腹膜炎大鼠体内MCP-1和磷酸化c-Jun的表达水平,减轻大鼠的腹膜炎。此外,安体舒通还能够通过诱导人转录因子Ⅱ复合体解旋酶核心亚单位-着色性干皮病B组补体蛋白的降解来发挥抗炎作用, 大量文献研究结果表明安体舒通兼具抗炎效应和心肌保护作用。同时,本研究发现,脓毒症大鼠给予安体舒通后,血清及心室肌组织中炎性因子(IL-6和TNF-a)含量明显减少(P < 0.05),心肌损伤相关指标(CK-MB和cTnI)含量显著下降(P < 0.05),HR、LVDd明显降低(P < 0.05),EF、FS明显增加(P < 0.05),同时心室肌凋亡明显缓解(P < 0.05),凋亡相关蛋白Bcl2显著上调,Bax及Caspase3表达量明显下调(P < 0.05),证实安体舒通在脓毒症心肌损伤中的治疗作用。

利益冲突   所有作者均声明不存在利益冲突

参考文献
[1] Shankar-Hari M, Phillips GS, Levy ML, et al. Developing a new definition and assessing new clinical criteria for septic shock[J]. JAMA, 2016, 315(8): 775. DOI:10.1001/jama.2016.0289
[2] 陈振英, 何小军. 2018中国脓毒症研究发展蓝皮书及未来展望[J]. 中华急诊医学杂志, 2019, 28(10): 1332-1334. DOI:10.3760/cma.j.issn.1671-0282.2019.10.032
[3] Tiru B, DiNino EK, Orenstein A, et al. The economic and humanistic burden of severe Sepsis[J]. Pharmaco Economics, 2015, 33(9): 925-937. DOI:10.1007/s40273-015-0282-y
[4] Gaieski DF, Edwards JM, Kallan MJ, et al. Benchmarking the incidence and mortality of severe Sepsis in the United States[J]. Crit Care Med, 2013, 41(5): 1167-1174. DOI:10.1097/ccm.0b013e31827c09f8
[5] Chambers KA. Outcomes of severe Sepsis and septic shock patients after stratifi cation by initial lactate value[J]. World J Emerg Med, 2018, 9(2): 113. DOI:10.5847/wjem.j.1920-8642.2018.02.005
[6] 王烁. 脓毒症休克患者心功能的动态变化及对预后的影响[J]. 中华急诊医学杂志, 2018, 27(4): 389-393. DOI:10.3760/cma.j.issn.1671-0282.2018.04.011
[7] Landesberg G, Gilon D, Meroz Y, et al. Diastolic dysfunction and mortality in severe Sepsis and septic shock[J]. Eur Heart J, 2012, 33(7): 895-903. DOI:10.1093/eurheartj/ehr351
[8] Bendtzen K, Hansen PR, Rieneck K, et al. Spironolactone inhibits production of proinfl ammatory cytokines, including tumour necrosis factor-alpha and interferon-Gamma, and has potential in the treatment of arthritis[J]. Clin Exp Immunol, 2003, 134(1): 151-158. DOI:10.1046/j.1365-2249.2003.02249.x
[9] Zhao M, Célérier I, Bousquet E, et al. Mineralocorticoid receptor is involved in rat and human ocular chorioretinopathy[J]. J Clin Invest, 2012, 122(7): 2672-2679. DOI:10.1172/jci61427
[10] Herrada AA, Contreras FJ, Marini NP, et al. Aldosterone promotes autoimmune damage by enhancing Th17-mediated immunity[J]. J Immunol, 2010, 184(1): 191-202. DOI:10.4049/jimmunol.0802886
[11] Ma Y. Dose-related effects of dexmedetomidine on immunomodulation and mortality to septic shock in rats[J]. World J Emerg Med, 2018, 9(1): 56. DOI:10.5847/wjem.j.1920-8642.2018.01.009
[12] Bartekova M, Radosinska J, Jelemensky M, et al. Role of cytokines and infl ammation in heart function during health and disease[J]. Heart Fail Rev, 2018, 23(5): 733-758. DOI:10.1007/s10741-018-9716-x
[13] van Taunay JS, Albelda MT, Frias JC, et al. Biologics and cardiovascular disease[J]. J Cardiovasc Pharmacol, 2018, 72(2): 77-85. DOI:10.1097/fjc.0000000000000595
[14] Kumar A, Thota V, Dee L, et al. Tumor necrosis factor alpha and interleukin 1beta are responsible for in vitro myocardial cell depression induced by human septic shock serum[J]. J Exp Med, 1996, 183(3): 949-958. DOI:10.1084/jem.183.3.949
[15] Zhang ZF, Liu Y, Ren XC, et al. Caffeoylquinic acid derivatives extract of Erigeron multiradiatus Alleviated acute myocardial ischemia reperfusion injury in rats through inhibiting NF-KappaB and JNK activations[J]. Mediat Inflamm, 2016, 2016: 1-11. DOI:10.1155/2016/7961940
[16] Kimura A, Naka T, Nakahama T, et al. Aryl hydrocarbon receptor in combination with Stat1 regulates LPS-induced inflammatory responses[J]. J Exp Med, 2009, 206(9): 2027-2035. DOI:10.1084/jem.20090560
[17] Hurst SM, Wilkinson TS, McLoughlin RM, et al. IL-6 and its soluble receptor orchestrate a temporal switch in the pattern of leukocyte recruitment seen during acute inflammation[J]. Immunity, 2001, 14(6): 705-714. DOI:10.1016/s1074-7613(01)00151-0
[18] Zhang CH. The role of inflammatory cytokines in endothelial dysfunction[J]. Basic Res Cardiol, 2008, 103(5): 398-406. DOI:10.1007/s00395-008-0733-0