中华急诊医学杂志  2020, Vol. 29 Issue (1): 137-140   DOI: 10.3760/cma.j.issn.1671-0282.2020.01.023
重症患者的肠内营养喂养方式:间断喂养,还是持续喂养
卢孔渺 , 黄曼     
浙江大学医学院附属第二医院综合ICU,杭州 310052

肠内营养治疗是危重病治疗重要组成部分,间断或连续给予仍存在争议。持续喂养方式对于肠内吸收能力差或有胃肠功能紊乱患者耐受性更好, 也是目前临床上,重症患者中应用较为广泛的喂养方式,但存在堵管和喂养时间较长等缺点[1],且有研究发现,持续肠内营养方式无法有效地刺激胃肠道[2];间断喂养是一种更符合生理特点的喂养方式,有利于危重症患者早期下床活动和参与生理治疗,与住院时间缩短及病死率降低有一定的相关性。目前,临床上较为常见的间断喂养方式,包括Bolus喂养[3]和持续喂养16~18 h、中间中断6~8 h[4-5]等。

1 目标营养量与喂养中断

尽管目前对于理想的营养摄入量仍存在一定的争议,标准目标摄入量并未明确,一般目标摄入量设定为25~30 kcal/(kg·d)(1 kcal=4.184 kJ), 但多数患者实际上并未达标,重症患者无法提供充分的营养支持与患者营养不良、感染风险、住院时间延长、住院费用增加和病死率增高相关[6]。有研究发现给予超过65%或80~90%的目标量可有效改善临床预后[7-8],也有研究提示给予目标量喂养和50%目标量,其在院内感染, ICU住院天数和病死率方面差异无统计学意义[9]。目前普遍观点认为,营养支持与ICU住院时间、机械通气时间及临床并发症密切相关[10]。尽管如此,临床上仍有部分医师并没有意识到营养支持的重要性。在一项针对重症患者营养达标情况的临床调查结果发现,仅51.6%的重症患者喂养量达标[11],更为重要的是,对于那些已加强营养支持治疗患者,在临床执行过程中仅约47%~70%的每日临床计划摄入量被患者实际摄入,而外科患者较内科患者实际摄入量更少[12-15]。而喂养不达标除了医源性摄入过低外,则为喂养过程中出现中断。

有研究发现, 约79%持续胃肠内营养患者存在多次营养中断情况[4]。临床上,喂养中断原因很多,包括医源性因素(操作、管理疏忽等)和患者因素(喂养不耐受等),其中,因临床操作或检查而中断高达45.1%,其他还包括如高胃内残余量、腹泻、胃管移位及呕吐等。喂养中断在喂养不达标中占有很大比重,而有研究认为66%的肠内营养中断均是可避免的[11, 13, 16]。因临床操作(如手术、支气管镜检查等)和外出检查等系统误差所致的喂养中断,此类因素客观难以避免。早期研究认为,针对外科患者此类因素,主要以增加喂养中断前后的喂养速度,以达到增加喂养量目的,而非减少中断[17]。但对于频繁因诊断和治疗导致喂养中断者,尝试间断喂养对增加重症患者肠内营养摄入量较持续喂养更为合适[3]。而对于那些因喂养过程中出现呕吐、腹泻、腹胀及高胃内残留量等喂养不耐受情况,有研究发现, 持续喂养与间断喂养方式,其并发症(胃肠和呼吸系统)无明显差别,但间断喂养肠内营养应用中断较少,达胃肠营养目标量更快[3]。但目前观点认为,对于喂养不耐受高危的重症患者,仍建议采用持续喂养提供能量[18]

2 肠内营养相关并发症 2.1 感染性并发症

主要包括营养液的误吸和污染两方面。误吸主要表现为吸入性肺炎,是较为严重的威胁生命的肠内营养应用并发症。据不同研究表明,肠内营养期间误吸发生率为19%~70%,高危因素包括高龄,意识不清,镇静,气管插管,NHISS评分等[19-20]。有研究发现,间断Bolus喂养和持续喂养方式对误吸发生率并无明显影响[21];而更早期的小样本量研究发现,间断喂养较持续喂养其吸入性肺炎发生率更低[22]。单纯研究误吸和喂养方式的研究偏少,难以得出有效的结论。

2.2 胃肠道并发症

肠内营养胃肠道的并发症,较为常见的为反流、腹泻和便秘,均严重影响患者获得充足的肠内营养,且反流也是误吸和吸入性肺炎的高危因素[23-24]。喂养方式可能是影响胃肠道并发症发生的重要因素,部分研究表明,Bolus喂养较持续喂养方式更易出现腹胀、呕吐和腹泻,且Bolus喂养易引起胃内容物负荷量增加,刺激升结肠液体分泌,诱发腹泻[25-28],但也有研究结果正好相反[29-30],同时也有研究发现,早期开放间断肠内营养患者,其胃肠道功能恢复更快[31]

近年来,有研究人员希望通过增加肠内营养液的黏稠度,减少Bolus喂养后误吸和反流的发生;有研究人员在健康志愿者中研究发现,半固化方式增加肠内营养黏稠度后可加快胃排空速度,减少胃食管反流发生,研究认为可能与其抑制胃内容物一过性释放,从而避免“十二指肠制动机制”的促发有关[32];在老年患者中发现,半固化肠内营养可促进肠内营养从胃近端向远端转移,从而明显抑制胃食管反流[33];在痴呆和帕金森病患者中,研究发现高黏稠度肠内营养可有效减少误吸发生[34];在头颈部肿瘤患者中可能也有一定作用[35]。但也有研究认为,在经皮胃造瘘术后半固化肠内营养预防胃食管反流和误吸方面,较持续喂养有明显改善或差异无统计学意义,疗效尚不统一[33, 36],且半固化剂在重症患者应用方面研究较少。

目前,指南中推荐的关于喂养不耐受患者,除了抬高床头、增加促胃动力药外,改鼻肠管喂养也是其中较为重要的改进方式,而目前关于利用鼻肠管行间断Bolus喂养的研究极少。

2.3 代谢并发症 2.3.1 血糖

早期有研究发现,控制血糖方面,持续喂养较间断喂养更佳,且血糖波动更小[37];而血糖波动大小是独立于低血糖、糖尿病、器官功能障碍等导致病死率增加独立危险因素[38];近期也有研究发现,持续和间断喂养方式在血糖波动和胰岛素用量上差异均无统计学意义[39]。目前关于肠内营养与血糖及胰岛素分泌情况的研究较少,样本量偏小,肠内营养应用方式与血糖控制水平尚无定论。

2.3.2 蛋白质合成

动物研究表明,蛋白合成具有一定时限性,即肌肉蛋白合成在静脉营养后30 min内快速发生,且约维持90~120 min,且其可能存在一定的饱和效应,若连续营养超过2 h,蛋白合成降低至基础水平[40-42],这些现象均在一定程度上支持间断喂养有利于蛋白合成。但这些研究以静脉营养为主要研究对象,而肠内营养,特别是关于重症患者肠内营养不同喂养方式对蛋白营养目前研究较少。

3 间断喂养和胃肠道激素

目前欧美指南推荐,对EN喂养不耐受患者可接受促胃肠动力药促进胃肠排空,如胃复安和红霉素等,重症患者中利用促胃动力药可有效增加胃肠蠕动,减少喂养不耐受,但其相关中枢神经系统和心脏等相关并发症,一定程度上限制其在重症患者中的应用[43-44]

一般而言,影响生理性胃肠排空因素较多,包括体位,EN制剂成分,能量和黏稠度等。其中,重症患者血糖水平是影响胃肠排空的重要因素之一,高血糖明显降低胃窦活动,延缓胃肠排空[45],急性血糖改变是重要的,可逆性影响胃动力因素,同样高胰岛素血症和胰岛素抵抗与胃肠排空延迟和胃肠激素紊乱相关,这也是重症患者强调将患者控制血糖重要性的原因[46]

有研究发现,不同喂养方式可通过调节神经-体液途径,影响结肠的水分吸收和胃肠运动,如神经肽YY、胆囊收缩素(CCK)和胃促生长素(ghrelin)等。大量研究表明,胃肠激素,如CCK、ghrelin及神经肽YY与喂养不耐受明显相关,不耐受患者CCK和Peptide YY多明显升高,而活性Ghrelin多明显下降[47],且此类激素水平变化,与是否早期喂养、喂养制剂(肠内还是胃肠外喂养)、疾病严重程度无明显相关性[48-50]。Chowdhury等[51]以12位健康志愿者为研究人群,随机入组为间断喂养或持续喂养,7~10 d后喂养方式互换进行组间和自身对照研究,结果发现,相比于持续喂养,Bolus喂养可显著增加肠系膜上动脉血流,早期小肠内含水量下降更明显,且ghrelin和神经肽YY水平变化更为明显,且与喂养时相明显相关。但重症患者中,间断喂养对胃肠激素分泌影响知之甚少。

综上所述,重症患者肠内营养是一种重要的营养支持手段,多数患者仍以连续喂养为主。随着临床营养和研究深入,间断喂养作为一种更符合生理的喂养模式,具有其优势,尤其在减少喂养中断发生率方面,而且间断喂养在喂养不耐受及误吸等并发症发生率并未明显增加。

利益冲突  所有作者均声明不存在利益冲突

参考文献
[1] 朱革珍. 持续肠内营养法在ICU危重症患者中的应用[J]. 实用临床医药杂志, 2017, 14(21): 171-172. DOI:10.7619/jcmp.201714056
[2] Chen S, Xian W, Cheng S, et al. Risk of regurgitation and aspiration in patients infused with different volumes of enteral nutrition[J]. Asia Pac J Clin Nutr, 2015, 24(2): 212-218. DOI:10.6133/apjcn.2015.24.2.12
[3] MacLeod JB, Lefton J, Houghton D, et al. Prospective randomized control trial of intermittent versus continuous gastric feeds for critically ill trauma patients[J]. J Trauma, 2007, 63(1): 57-61. DOI:10.1097/01.ta.0000249294.58703.11
[4] van Berge Henegouwen MI, Akkermans LM, van Gulik TM, et al. Prospective, randomized trial on the effect of cyclic versus continuous enteral nutrition on postoperative gastric function after pylorus-preserving pancreatoduodenectomy[J]. Ann Surg, 1997, 226(6): 677-685. DOI:10.1097/00000658-199712000-00005
[5] Bonten MJ, Gaillard CA, van der Hulst R, et al. Intermittent enteral feeding: the influence on respiratory and digestive tract colonization in mechanically ventilated intensive-care-unit patients[J]. Am J Respir Crit Care Med, 1996, 154(2 Pt 1): 394-399. DOI:10.1164/ajrccm.154.2.8756812
[6] 孙仁华, 江荣林, 黄曼, 等. 重症患者早期肠内营养临床实践专家共识[J]. 中华危重病急救医学, 2018, 8(30): 715-721. DOI:10.3760/cma.j.issn.2095-4352.2018.08.001
[7] Clinical Guidelines for the Use of Parenteral and Enteral Nutrition in Adult and Pediatric Patients, 2009[J]. JPEN J Parenter Enteral Nutr, 2009, 33(3): 255-259.DOI: 10.1177/0148607109333115.
[8] Heyland DK, Cahill N, Day AG. Optimal amount of calories for critically ill patients: depends on how you slice the cake![J]. Crit Care Med, 2011, 39(12): 2619-2626. DOI:10.1097/CCM.0b013e318226641d
[9] Charles EJ, Petroze RT, Metzger R, et al. Hypocaloric compared with eucaloric nutritional support and its effect on infection rates in a surgical intensive care unit: a randomized controlled trial[J]. Am J Clin Nutr, 2014, 100(5): 1337-1343. DOI:10.3945/ajcn.114.088609
[10] 杨洁.重症患者营养支持回顾与再认识[J/CD].临床医药文献电子杂志, 2018, 81(5): 185-186. DOI: 10.3877/j.issn.2095-8242.2018.81.139.
[11] McClave SA, Sexton LK, Spain DA, et al. Enteral tube feeding in the intensive care unit: factors impeding adequate delivery[J]. Crit Care Med, 1999, 27(7): 1252-1256. DOI:10.1097/00003246-199907000-00003
[12] Morgan LM, Dickerson RN, Alexander KH, et al. Factors causing interrupted delivery of enteral nutrition in trauma intensive care unit patients[J]. Nutr Clin Pract, 2004, 19(5): 511-517. DOI:10.1177/0115426504019005511
[13] Spain DA, McClave SA, Sexton LK, et al. Infusion protocol improves delivery of enteral tube feeding in the critical care unit[J]. JPEN J Parenter Enteral Nutr, 1999, 23(5): 288-292. DOI:10.1177/0148607199023005288
[14] Drover JW, Cahill NE, Kutsogiannis J, et al. Nutrition therapy for the critically ill surgical patient: we need to do better![J]. JPEN J Parenter Enteral Nutr, 2010, 34(6): 644-652. DOI:10.1177/0148607110372391
[15] Hise ME, Halterman K, Gajewski BJ, et al. Feeding practices of severely ill intensive care unit patients: an evaluation of energy sources and clinical outcomes[J]. J Am Diet Assoc, 2007, 107(3): 458-465. DOI:10.1016/j.jada.2006.12.012
[16] O'Leary-Kelley CM, Puntillo KA, Barr J, et al. Nutritional adequacy in patients receiving mechanical ventilation who are fed enterally[J]. Am J Crit Care, 2005, 14(3): 222-231.
[17] Peev MP, Yeh DD, Quraishi SA, et al. Causes and consequences of interrupted enteral nutrition: a prospective observational study in critically ill surgical patients[J]. JPEN J Parenter Enteral Nutr, 2015, 39(1): 21-27. DOI:10.1177/0148607114526887
[18] McClave SA, Taylor BE, Martindale RG, et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.)[J]. JPEN J Parenter Enteral Nutr, 2016, 40(2): 159-211. DOI:10.1177/0148607115621863
[19] 王龙芳. 重症脑梗死患者肠内营养误吸的影响因素与护理对策[J]. 海南医学, 2019, 30(16): 2167-2169. DOI:10.3969/j.issn.1003-6350.2019.16.038
[20] Wan K, Liang H, Yan G, et al. A quality assessment of evidence-based guidelines for the prevention and management of ventilator-associated pneumonia: a systematic review[J]. J Thorac Dis, 2019, 11(7): 2795-2807. DOI:10.21037/jtd.2019.06.56
[21] Kadamani I, Itani M, Zahran E, et al. Incidence of aspiration and gastrointestinal complications in critically ill patients using continuous versus bolus infusion of enteral nutrition: a pseudo-randomised controlled trial[J]. Aust Crit Care, 2014, 27(4): 188-193. DOI:10.1016/j.aucc.2013.12.001
[22] Chen YC, Chou SS, Lin LH, et al. The effect of intermittent nasogastric feeding on preventing aspiration pneumonia in ventilated critically ill patients[J]. J Nurs Res, 2006, 14(3): 167-180. DOI:10.1097/01.JNR.0000387575.66598.2a
[23] Whelan K, Judd PA, Tuohy KM, et al. Fecal microbiota in patients receiving enteral feeding are highly variable and may be altered in those who develop diarrhea[J]. Am J Clin Nutr, 2009, 89(1): 240-247. DOI:10.3945/ajcn.2008.26219
[24] Nassar AP Jr., da Silva FM, de Cleva R. Constipation in intensive care unit: incidence and risk factors[J]. J Crit Care, 2009, 24(4): 630.e639-e612. DOI:10.1016/j.jcrc.2009.03.007
[25] Edes TE, Walk BE, Austin JL. Diarrhea in tube-fed patients: feeding formula not necessarily the cause[J]. Am J Med, 1990, 88(2): 91-93. DOI:10.1016/0002-9343(90)90454-L
[26] Bowling TE, Raimundo AH, Grimble GK, et al. Colonic secretory effect in response to enteral feeding in humans[J]. Gut, 1994, 35(12): 1734-1741. DOI:10.1136/gut.35.12.1734
[27] Bowling TE, Silk DB. Intestinal responses induced by enteral feeding[J]. Nutrition, 1995, 11(3): 304-307.
[28] Bowling TE, Silk DB. Colonic responses to enteral tube feeding[J]. Gut, 1998, 42(2): 147-151. DOI:10.1136/gut.42.2.147
[29] Hiebert JM, Brown A, Anderson RG, et al. Comparison of continuous vs intermittent tube feedings in adult burn patients[J]. JPEN J Parenter Enteral Nutr, 1981, 5(1): 73-75. DOI:10.1177/014860718100500173
[30] 刘明月. 持续与间断肠内营养支持方式对颅脑损伤病人肠内营养耐受性的影响[J]. 全科护理, 2019, 22(17): 2766-2768. DOI:10.12104/j.issn.1674-4748.2019.22.026
[31] 杨帆. 早期间断肠内营养对重症急性胰腺炎患者预后的影响[J]. 临床消化病杂志, 2018, 6(30): 369-372. DOI:10.3870/lcxh.j.issn.1005-541X.2018.06.009
[32] Shimoyama Y, Kusano M, Kawamura O, et al. High-viscosity liquid meal accelerates gastric emptying[J]. Neurogastroenterol Motil, 2007, 19(11): 879-886. DOI:10.1111/j.1365-2982.2007.00972.x
[33] Nishiwaki S, Araki H, Shirakami Y, et al. Inhibition of gastroesophageal reflux by semi-solid nutrients in patients with percutaneous endoscopic gastrostomy[J]. JPEN J Parenter Enteral Nutr, 2009, 33(5): 513-519. DOI:10.1177/0148607108327045
[34] Logemann JA, Gensler G, Robbins J, et al. A randomized study of three interventions for aspiration of thin liquids in patients with dementia or Parkinson's disease[J]. J Speech Lang Hear Res, 2008, 51(1): 173-183. DOI:10.1044/1092-4388(2008/013)
[35] Barbon CE, Steele CM. Efficacy of thickened liquids for eliminating aspiration in head and neck cancer: a systematic review[J]. Otolaryngol Head Neck Surg, 2015, 152(2): 211-218. DOI:10.1177/0194599814556239
[36] Adachi K, Furuta K, Morita T, et al. Half-solidification of nutrient does not decrease gastro-esophageal reflux events in patients fed via percutaneous endoscopic gastrostomy[J]. Clin Nutr, 2009, 28(6): 648-651. DOI:10.1016/j.clnu.2009.05.006
[37] Sanz Paris A, Lazaro J, Guallar A, et al. Continuous enteral nutrition versus single bolus: effects on urine C peptide and nitrogen balance[J]. Med Clin (Barc), 2005, 124(16): 613-615. DOI:10.1157/13074390
[38] Hermanides J, Vriesendorp TM, Bosman RJ, et al. Glucose variability is associated with intensive care unit mortality[J]. Crit Care Med, 2010, 38(3): 838-842. DOI:10.1097/CCM.0b013e3181cc4be9
[39] Evans DC, Forbes R, Jones C, et al. Continuous versus bolus tube feeds: Does the modality affect glycemic variability, tube feeding volume, caloric intake, or insulin utilization?[J]. Int J Crit Illn Inj Sci, 2016, 6(1): 9-15. DOI:10.4103/2229-5151.177357
[40] Marik PE. Feeding critically ill patients the right 'whey': thinking outside of the box. A personal view[J]. Ann Intensive Care, 2015, 5(1): 51. DOI:10.1186/s13613-015-0051-2
[41] Gazzaneo MC, Suryawan A, Orellana RA, et al. Intermittent bolus feeding has a greater stimulatory effect on protein synthesis in skeletal muscle than continuous feeding in neonatal pigs[J]. J Nutr, 2011, 141(12): 2152-2158. DOI:10.3945/jn.111.147520
[42] Bohe J, Low JF, Wolfe RR, et al. Latency and duration of stimulation of human muscle protein synthesis during continuous infusion of amino acids[J]. J Physiol, 2001, 532(Pt 2): 575-579.
[43] Fraser RJ, Bryant L. Current and future therapeutic prokinetic therapy to improve enteral feed intolerance in the ICU patient[J]. Nutr Clin Pract, 2010, 25(1): 26-31. DOI:10.1177/0884533609357570
[44] Nguyen NQ, Chapman M, Fraser RJ, et al. Prokinetic therapy for feed intolerance in critical illness: one drug or two?[J]. Crit Care Med, 2007, 35(11): 2561-2567. DOI:10.1097/01.ccm.0000286397.04815.b1
[45] Jones KL, Berry M, Kong MF, et al. Hyperglycemia attenuates the gastrokinetic effect of erythromycin and affects the perception of postprandial hunger in normal subjects[J]. Diabetes Care, 1999, 22(2): 339-344. DOI:10.2337/diacare.22.2.339
[46] Kaji M, Nomura M, Tamura Y, et al. Relationships between insulin resistance, blood glucose levels and gastric motility: an electrogastrography and external ultrasonography study[J]. J Med Invest, 2007, 54(1/2): 168-176. DOI:10.2152/jmi.54.168
[47] Crona D, MacLaren R. Gastrointestinal hormone concentrations associated with gastric feeding in critically ill patients[J]. JPEN J Parenter Enteral Nutr, 2012, 36(2): 189-196. DOI:10.1177/0148607111413770
[48] Nguyen NQ, Fraser RJ, Bryant LK, et al. The impact of delaying enteral feeding on gastric emptying, plasma cholecystokinin, and peptide YY concentrations in critically ill patients[J]. Crit Care Med, 2008, 36(5): 1469-1474. DOI:10.1097/CCM.0b013e31816fc457
[49] Mandragos C, Moukas M, Amygdalou A, et al. Gastrointestinal hormones and short-term nutritional schedules in critically ill patients[J]. Hepatogastroenterology, 2003, 50(53): 1442-1445. DOI:10.1002/hed.10305
[50] Nguyen NQ, Fraser RJ, Chapman MJ, et al. Feed intolerance in critical illness is associated with increased basal and nutrient-stimulated plasma cholecystokinin concentrations[J]. Crit Care Med, 2007, 35(1): 82-88. DOI:10.1097/01.ccm.0000250317.10791.6c
[51] Chowdhury AH, Murray K, Hoad CL, et al. Effects of bolus and continuous nasogastric feeding on gastric emptying, small bowel water content, superior mesenteric artery blood flow, and plasma hormone concentrations in healthy adults: a randomized crossover study[J]. Ann Surg, 2016, 263(3): 450-457. DOI:10.1097/sla.0000000000001110