中华急诊医学杂志  2019, Vol. 28 Issue (1): 116-120
Claudin蛋白在急性肺损伤中的研究进展
耿平1 , 凌冰玉1 , 李玉洁1 , 谈定玉1     
1 江苏省苏北人民医院,扬州大学临床医学院急诊科 225001

急性肺损伤(acute lung injury, ALI)是指多种肺内、肺外因素所引起的,以进行性低氧血症和呼吸窘迫为临床特征的急性呼吸衰竭[1]。紧密连接(tight junction, TJ)存在于上皮细胞之间、上皮细胞与血管内皮细胞之间,负责调控细胞旁离子和溶质分子的跨膜运输及维持细胞极性状态,与细胞内外通透性相关[2-3]。细胞间紧密连接是一种跨膜蛋白复合体,紧密连接的稳定需要几种不同蛋白的协调活动来维持。闭合蛋白Occludin作为第一种紧密连接膜蛋白被发现[4],最初被认为是屏障功能必不可少的蛋白,但紧密连接存在于不表达Occludin的Sertoli细胞,这又提示了其他紧密连接蛋白的存在[5]。进而Claudin蛋白被发现是保证紧密连接的渗透性具有特异性的主要蛋白[6]。目前研究发现Claudin的异常表达可导致上皮细胞、内皮细胞和间皮细胞结构破坏、功能受损,与多种疾病的发生发展存在密切联系[7]。目前对Claudin蛋白的肺调节功能知之甚少。研究表明,Claudin蛋白的差异表达影响急性肺损伤的上皮屏障功能变化[8]。本文就Claudin在急性肺损伤中的作用尤其对肺上皮屏障功能的作用新进展予以综述。

1 Claudin蛋白的结构

目前已经证实,人类Claudin家族至少有27个成员[9]。Claudin蛋白是一种相对分子质量约20 000~27 000的四次跨膜蛋白,氨基和羧基末端位于细胞质内,羧基末端富含丝氨酸、苏氨酸和酪氨酸残基,羧基末端在信号转导中发挥重要作用[10]。胞外形成2个长度不等的外环,通过同源或异源性方式接触,形成开放性或封闭性细胞间孔道,不同介质根据大小和电荷不同选择性通过细胞间转运通道[8]。为形成功能屏障,同一细胞膜或相邻细胞膜上相同或不同的Claudin分子间可以相互聚合形成多聚体结构, 二聚体结构只发生于个别Claudin分子间,如Claudin-1和4,而Claudin-1和2之间却不能形成二聚体结构[11]

2 Claudin蛋白在肺上皮的表达

Claudin蛋白在皮肤、脑、神经系统、内脏组织中表达[12],大部分组织中表达2种以上Claudin,如肾脏中有Claudin-4和Claudin-8,而Claudin-1、Claudin-2、Claudin-3共同存在于肝脏中,也有一些组织紧密连接链中的Claudin是特定的,睾丸的足突细胞中主要表达的是单一的Claudin-11[13]

研究表明,肺上皮细胞表达至少14种不同的Claudin mRNAs和蛋白。Claudin可以根据能否形成细胞旁通道(成孔Claudin)或限制细胞旁通透性(封闭Claudin)来分类[14],肺上皮细胞倾向于封闭Claudin的表达(如Claudin-1、Claudin-3、Claudin-4、Claudin-5、Claudin-7、Claudin-18),而不是高表达成孔Claudin(如Claudin-2、Claudin-10、Claudin-15)[8]。在呼吸道上皮细胞中,Claudin-3、Claudin-5、Claudin-8主要位于紧密连接,Claudin-1、Claudin-4位于紧密连接和侧膜,Claudin-7主要位于侧膜,Claudin-2主要位于胞内[15]。其中肺泡上皮表达最多的Claudin蛋白为Claudin-3、Claudin-4、Claudin-18。Claudin的表达分布和上皮细胞类型有关,即具有细胞特异性,不同的细胞类型Claudin表达结构不同与细胞旁路通透特性的改变直接相关。Ⅰ型肺泡上皮中Claudin-3、Claudin-4、Claudin-18分别占31%、10%、56%,而Ⅱ型肺泡上皮中Claudin-3、Claudin-4、Claudin-18分别占67%、23%、7%[16]。这些Claudin在急性肺损伤发生24 h后的纤支镜肺泡灌洗液中升高[17]

3 Claudin蛋白在肺上皮屏障功能中的作用

尽管Claudin蛋白表达的改变并不是调节细胞转运渗透率的唯一机制,但是Claudin在病理状态下表达的改变提示单个蛋白变化对上皮屏障功能的影响[18]

3.1 Claudin-1

Claudin-1在气道上皮中广泛表达,丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)对氨基端的磷酰化可以增强Claudin-1的封闭性能[19-20]。Claudin-1不仅位于紧密连接,还位于侧膜,提示了Claudin-1可能亦调节相邻上皮细胞之间的粘附[21]。由于Claudin-1的封闭性能,干预Claudin-1的含量可以减少气道上皮的紧密度[22]。蛋白酶D3通过Claudin-1下调破坏上皮屏障功能[23]。蛋白酶激活受体2(protease activated receptor 2, PAR2)的活化短暂下调Claudin-1表达,减少上皮通透性。反之,胸腺基质淋巴细胞生成素(human thymic stromal lymphopoietin, TSLP)和过氧化物酶体增殖物激活受体(peroxisome proliferators-activated receptor γ, PPARγ)都增加Claudin-1表达,提高人鼻上皮的紧密度[24-26]。此外,有新的研究表明,高血糖可以诱导Claudin-1表达的增加,与此同时表达增加的还有Claudin-3,而Claudin-2的表达却是减少[27]

3.2 Claudin-2

Claudin-2使阳离子具有进入紧密连接的高通透性,这也是目前已知的唯一形成水的细胞旁孔的Claudin[26]。在气道上皮细胞中,Claudin-2位于细胞内而不是紧密连接,由TNF-α调节[28]。然而,它在气道上皮细胞中的特殊作用尚未明确。

3.3 Claudin-3

Claudin-3在人类肺脏的气道和肺泡都有表达,Ⅰ型肺泡上皮细胞Claudin-3的表达比Ⅱ型肺泡上皮细胞Claudin-3的表达低。Claudin-3对肺泡上皮细胞和其他细胞类型的功能不同,不仅如此,Claudin-3最初是在肺泡Ⅰ型-Ⅱ型细胞接口处被发现[29]。在细胞膜通透性中,Ⅰ型-Ⅱ型紧密连接与Ⅰ型-Ⅰ型细胞连接可能不同,其具体机制研究有待于体内测定肺泡紧密连接通透性方法的改进[30]。Claudin-3属于封闭Claudin,然而实验表明,Claudin-3增加与肺泡屏障功能降低有关,Claudin-3的过度表达可使跨上皮电阻降低,增强细胞旁路对大分子蛋白的通透性[31]。虽然Claudin-3在肺泡上皮细胞显著表达,但其对离子通透性的影响尚不清楚。Claudin-3可调节多种Claudin之间的反式作用,包括Claudin-1、Claudin-2、Claudin-5,而Claudin-3和Claudin-4之间没有反式作用,它们作为顺式异聚体相互作用[32]。Claudin-3的特殊作用,尤其是否需要它的相容性以形成Ⅰ型-Ⅱ型细胞连接,目前还需明确。

3.4 Claudin-4

Claudin-4在呼吸道上皮细胞中均有表达。Claudin-4是降低细胞旁通透性的封闭Claudin,Claudin-4对细胞旁渗透性的作用是受环境影响的[33]。Claudin-4表现出选择性阻止钠离子而不影响氯离子通过,在生理上,Claudin-4已被证实与对抗肺损伤的保护作用相关[34]。Claudin-4的增加与更好的肺水清除以及降低患者生理呼吸障碍相关[35]。与此相一致的是,在机械损伤或高氧环境的小鼠中,Claudin-4上调了12~16倍,Claudin-4缺陷小鼠的肺形态正常,在稳态流体平衡有轻微缺陷,这在很大程度上归因于降低的Na+-K+-ATP酶活性[36]。然而,Claudin-4缺陷小鼠在高氧环境下对肺损伤的敏感性增加,且肺水肿更严重[37]。Wray等[38]根据他们的实验数据推测Claudin-4缺陷小鼠在肺上皮屏障功能受到了严重损伤。但是与Claudin-18缺陷小鼠类似,Claudin缺失引起的对损伤反应的表型改变轻微[36]

受损的Claudin-4缺陷小鼠的基因表达分析揭示出下游基因如TNF和IL-1β活性增加,严重受损者还表现出早期生长反应因子1(early growth response factor 1,Egr1)增加[36]。这一现象与Claudin-18缺陷小鼠中IL-1β增加引起损害作用,Egr1降低有保护作用相一致[39]。这些证据都进一步支持了肺Claudin蛋白在控制细胞旁渗透性以外的调节细胞生理作用。

3.5 Claudin-5

Claudin-5主要在血管内皮及肺微循环表达,也有少部分在上皮表达。在组织切片中,内皮Claudin-5的高水平表达使得肺泡上皮细胞中Claudin-5表达难以被发现,但是在分离的人肺泡上皮细胞中Claudin-5 mRNA及蛋白很容易被检测到[39]

肺泡的气液屏障反映了在肺微血管及肺泡上皮中紧密连接的联合功能。由于这一屏障的双重性,肺泡内皮和上皮紧密连接的密切关系以及两种组织均表达Claudin-5,导致一些与Claudin-5调节肺泡屏障功能相关矛盾的数据。有研究表明,辛伐他汀减轻急性肺损伤的过程中,内皮细胞中的Claudin-5起了重要的作用[40]。Dalmasso等[41]的实验说明,IL-4可以激活内皮细胞中Claudin-5的上调,从而对内皮细胞抵抗损伤起作用。这些都提示Claudin-5很有可能通过提高屏障内皮部分的屏障功能产生保护作用。然而,丙烯醛诱导的急性肺损伤模型中,Claudin-5表达增加,抵抗损伤的株系比对损伤敏感的株系更为明显[42]。这提示Claudin-5表达增加降低了肺泡上皮的屏障功能,从而促进急性肺损伤的发生。在慢性长期饮酒患者肺和肺上皮细胞中亦发现Claudin-5表达增加能引起肺上皮细胞的细胞旁通透性增加,更易出现肺水肿和肺损伤[43]。然而,与此矛盾的是,在Ward等[44]和Aslam等[45]的研究中,在急性肺损伤的小鼠模型中观察到,TNF-α可激活经典的NF-κB通路,从而下调Claudin-5的表达。这又提示Claudin-5表达增加增强了肺泡上皮的屏障功能,从而保护肺上皮功能。因此,Claudin-5作用的双重性是由于在内皮和上皮细胞中的作用不同,还是由于相关的调节机制不同,还是简单的因为损伤的因素不同,这些都尚未明确。也正因为这种双重性,在肺损伤中很难判断哪种作用占主导因素。

3.6 Claudin-7

Claudin-7在整个呼吸道及成人肺部表达,其渗透特性很难阐明,提示其功能很大程度受环境影响。

Claudin-7缺陷小鼠可在出生后两周死亡,所以它们的肺表型难以得到研究。通过siRNA使Claudin-7沉默后,Claudin-7基因敲除小鼠的小肠和大肠表现出细胞外基质金属蛋白酶(matrix metalloprotein, MMP) MMP-3和MMP-7的表达和活性增加[46]。MMP一般与肺损伤严重程度增加有关,这就提示了Claudin-7缺失可能与ARDS加重有关。相反,表皮生长因子(epidermal growth factor, EGF)对肺损伤有保护作用,这与Claudin-7及Claudin-4的表达增加有关[47]。在呼吸道上皮细胞中,Claudin-7位于上皮细胞的侧膜,因此,上皮细胞之间的侧膜粘附连接可能是Claudin-7在呼吸道的主要任务之一[48]。研究发现,Claudin-7在人肺癌细胞中通过和整合蛋白β1(integrin-β1)相互作用调节细胞粘附,在一定程度上也验证了这个假设[49]

3.7 Claudin-8

Claudin-8增加紧密连接对氯离子的选择通透性[50],Claudin-8和Claudin-4相互作用,在犬肾传代细胞(Madin-Darby canine kidney, MDCK)中,Claudin-8协助Claudin-4集中于紧密连接,因此两种Claudin对于细胞旁氯离子的选择通透性都是必需的。另外,在人结肠细胞中,Claudin-8调节钠离子吸收相关的紧密蛋白封闭,即通过阻止钠离子细胞旁外流来增加钠吸收[15]。对于Claudin-8在肺脏中的功能研究更少,免疫组化实验显示Claudin-8位于呼吸道上皮细胞,集中位于紧密连接。在呼吸道上皮细胞中,糖皮质激素能上调Claudin-8,而盐皮质激素不能上调Claudin-8[51]

3.8 Claudin-10

Claudin-10已在人肾脏、肝胆道、肺脏中被检测到,Claudin-10有6种不同的剪接变异体,Claudin-10a是肾脏独有的,而Claudin-10b在多种组织中检测到,这些剪接变异体通过影响Claudin-10的第一胞外结构域从而影响细胞旁通透性,其他剪接变异体影响Claudin-10基因的外显子1a和外显子4[52]。另外,Claudin-10也是肺脏中Clara细胞的潜在标志物,Claudin-10对细胞旁通透性的影响可能依赖于剪接变异体和细胞类型[53]

3.9 Claudin-18

Claudin-18有两种主要的剪接变异体,Claudin-18.1主要在肺部表达,Claudin-18.2主要在胃表达[54]。肺部的Claudin-18.1由肺泡上皮大量表达,这提示了其调节肺屏障功能的重要作用[55]。LaFemina等[56]利用基因敲除小鼠研究表明,Claudin-18敲除的小鼠不仅可以生存,而且肺液容积基本稳定,这主要由于其上皮钠通道、Na+-K+-ATP酶、氯离子通道活性的增加和Claudin-4表达的代偿增加,导致肺液清除率增加,使得小鼠对呼吸机相关性肺损伤(ventilator induced lung injury, VILI)的抵抗增加。虽然通道功能的增加与Claudin-18缺失有关,但这些通路如何关联尚不明确,Claudin-18很有可能调节紧密连接以直接控制细胞旁路转运。Hayashi等[57]的实验发现Claudin-18缺陷小鼠的血浆中促炎细胞因子IL-1β增加明显,这为这种作用的机制提供了潜在的线索。

Claudin-18缺乏如何改变肺离子通道活性和功能尚不清楚。Claudin-18缺乏显著降低转录因子Egr-1的mRNA水平[14]。Egr-1缺乏小鼠表现出对VILI的低敏感性,表明肺泡离子通道可能受Egr-1的调控。Claudin-18缺陷小鼠的肺泡灌洗液中有丰富的肺泡Ⅰ型细胞特异性蛋白podoplanin,表明肺泡Ⅰ型细胞受到了损伤[56]。Claudin-18敲除小鼠的肺泡Ⅱ型细胞增生,表明肺泡Ⅰ型细胞分化存在潜在缺陷。这些结果表明,Claudin-18在调节肺泡上皮甚至肺上皮分化有着广泛而复杂的作用,这在近年可能成为研究的热点。

4 结语与展望

综上所述,Claudins在维持上皮和内皮细胞的选择性渗透屏障功能上扮演重要角色。Claudins的表达发生改变可激活下游信号转导途径,从而影响肺泡屏障功能。因此,Claudins可作为ALI潜在的标志物,为ALI的病理生理演变提供有价值的证据,为其分子靶向治疗引导方向,进而成为预测治疗有效性与否的指示器。

肺泡上皮屏障功能在急性肺损伤发病机制中占有重要地位,但肺泡上皮紧密连接尤其是Claudin蛋白在肺内的表达和作用机制尚不十分清楚,Claudins与ALI的发生、发展的关系存在许多争议,这些都有待进一步的研究,随着Claudin蛋白与ALI的不断深入研究,将对ALI的发病机制和治疗做更为完善的补充。

参考文献
[1] 向有喜, 彭菲, 彭再梅. 急性呼吸窘迫综合征的诊治现状与展望[J]. 中华急诊医学杂志, 2017, 26(3): 255-259. DOI:10.3760/cma.j.issn.1671-0282.2017.03.002
[2] Chasiotis H, Kelly SP. Effects of elevated circulating cortisol levels on hydromineral status and gill tight junction protein abundance in the stenohaline goldfish[J]. Gen Comp Endocrinol, 2012, 175(2): 277-283. DOI:10.1016/j.ygcen.2011.11.024
[3] Stolwijk JA, Matrougui K, Renken CW, et al. Impedance analysis of GPCR-mediated changes in endothelial barrier function: overview and fundamental considerations for stable and reproducible measurements[J]. Pflugers Arch, 2015, 467(10): 2193-2218. DOI:10.1007/s00424-014-1674-0
[4] Furuse M, Hirase T, Itoh M, et al. Occludin: a novel integral membrane protein localizing at tight junctions[J]. J Cell Biol, 1993, 123(6 Pt 2): 1777-1788.
[5] Moroi S, Saitou M, Fujimoto K, et al. Occludin is concentrated at tight junctions of mouse/rat but not human/guinea pig Sertoli cells in testes[J]. Am J Physiol, 1998, 274(6 Pt 1): C1708-1717.
[6] Furuse M, Fujita K, Hiiragi T, et al. Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin[J]. J Cell Biol, 1998, 141(7): 1539-1550. DOI:10.1083/jcb.141.7.1539
[7] Gunzel D, Fromm M. Claudins and other tight junction proteins[J]. Compr Physiol, 2012, 2(3): 1819-1852. DOI:10.1002/cphy.c110045
[8] Koval M. Claudin heterogeneity and control of lung tight junctions[J]. Annu Rev Physiol, 2013, 75: 551-567. DOI:10.1146/annurev-physiol-030212-183809
[9] Whitsett JA, Alenghat T. Respiratory epithelial cells orchestrate pulmonary innate immunity[J]. Nat Immunol, 2015, 16(1): 27-35. DOI:10.1038/ni.3045
[10] Mehta D, Ravindran K, Kuebler WM. Novel regulators of endothelial barrier function[J]. Am J Physiol Lung Cell Mol Physiol, 2014, 307(12): L924-935. DOI:10.1152/ajplung.00318.2014
[11] Gunzel D, Yu AS. Function and regulation of claudins in the thick ascending limb of Henle[J]. Pflugers Arch, 2009, 458(1): 77-88. DOI:10.1007/s00424-008-0589-z
[12] Phyn C, Stelwagen K, Davis SR, et al. Tight junction protein abundance and apoptosis during involution of rat mammary glands[J]. J Cell Physiol, 2017, 232(8): 2075-2082. DOI:10.1002/jcp.25591
[13] Lal-Nag M, Morin PJ. The claudins[J]. Genome Biol, 2009, 10(8): 235. DOI:10.1186/gb-2009-10-8-235
[14] Gunzel D, Yu AS. Claudins and the modulation of tight junction permeability[J]. Physiol Rev, 2013, 93(2): 525-569. DOI:10.1152/physrev.00019.2012
[15] Wittekindt OH. Tight junctions in pulmonary epithelia during lung inflammation[J]. Pflugers Arch, 2017, 469(1): 135-147. DOI:10.1007/s00424-016-1917-3
[16] LaFemina MJ, Rokkam D, Chandrasena A, et al. Keratinocyte growth factor enhances barrier function without altering claudin expression in primary alveolar epithelial cells[J]. Am J Physiol Lung Cell Mol Physiol, 2010, 299(6): L724-734. DOI:10.1152/ajplung.00233.2010
[17] Jin W, Rong L, Liu Y, et al. Increased claudin-3, -4 and -18 levels in bronchoalveolar lavage fluid reflect severity of acute lung injury[J]. Respirology, 2013, 18(4): 643-651. DOI:10.1111/resp.12034
[18] Stone RC, Pastar I, Ojeh N, et al. Epithelial-mesenchymal transition in tissue repair and fibrosis[J]. Cell Tissue Res, 2016, 365(3): 495-506. DOI:10.1007/s00441-016-2464-0
[19] Fujibe M, Chiba H, Kojima T, et al. Thr203 of claudin-1, a putative phosphorylation site for MAP kinase, is required to promote the barrier function of tight junctions[J]. Exp Cell Res, 2004, 295(1): 36-47. DOI:10.1016/j.yexcr.2003.12.014
[20] Zhao B, Liu JQ, Zheng Z, et al. Human amniotic epithelial stem cells promote wound healing by facilitating migration and proliferation of keratinocytes via ERK, JNK and AKT signaling pathways[J]. Cell Tissue Res, 2016, 365(1): 85-99. DOI:10.1007/s00441-016-2366-1
[21] Kim B, Breton S. The MAPK/ERK-signaling pathway regulates the expression and distribution of tight junction proteins in the mouse proximal epididymis[J]. Biol Reprod, 2016, 94(1): 22. DOI:10.1095/biolreprod.115.134965
[22] Volksdorf T, Heilmann J, Eming SA, et al. Tight junction proteins claudin-1 and occludin are important for cutaneous wound healing[J]. Am J Pathol, 2017, 187(6): 1301-1312. DOI:10.1016/j.ajpath.2017.02.006
[23] Beutheu YS, Belmonte L, Galas L, et al. Methotrexate modulates tight junctions through NF-kappaB, MEK, and JNK pathways[J]. J Pediatr Gastroenterol Nutr, 2012, 54(4): 463-470. DOI:10.1097/MPG.0b013e318247240d
[24] Nomura K, Obata K, Keira T, et al. Pseudomonas aeruginosa elastase causes transient disruption of tight junctions and downregulation of PAR-2 in human nasal epithelial cells[J]. Respir Res, 2014, 15: 21. DOI:10.1186/1465-9921-15-21
[25] Ogasawara N, Kojima T, Go M, et al. PPARgamma agonists upregulate the barrier function of tight junctions via a PKC pathway in human nasal epithelial cells[J]. Pharmacol Res, 2010, 61(6): 489-498. DOI:10.1016/j.phrs.2010.03.002
[26] Masaki T, Kojima T, Okabayashi T, et al. A nuclear factor-kappaB signaling pathway via protein kinase C delta regulates replication of respiratory syncytial virus in polarized normal human nasal epithelial cells[J]. Mol Biol Cell, 2011, 22(13): 2144-2156. DOI:10.1091/mbc.E10-11-0875
[27] Mongelli-Sabino BM, Canuto LP, Collares-Buzato CB. Acute and chronic exposure to high levels of glucose modulates tight junction-associated epithelial barrier function in a renal tubular cell line[J]. Life Sci, 2017, 188: 149-157. DOI:10.1016/j.lfs.2017.09.004
[28] Wilmes A, Aschauer L, Limonciel A, et al. Evidence for a role of claudin 2 as a proximal tubular stress responsive paracellular water channel[J]. Toxicol Appl Pharmacol, 2014, 279(2): 163-172. DOI:10.1016/j.taap.2014.05.013
[29] Kaarteenaho R, Merikallio H, Lehtonen S, et al. Divergent expression of claudin -1, -3, -4, -5 and -7 in developing human lung[J]. Respir Res, 2010, 11: 59. DOI:10.1186/1465-9921-11-59
[30] Rossa J, Protze J, Kern C, et al. Molecular and structural transmembrane determinants critical for embedding claudin-5 into tight junctions reveal a distinct four-helix bundle arrangement[J]. Biochem J, 2014, 464(1): 49-60. DOI:10.1042/BJ20140431
[31] Suzuki H, Tani K, Tamura A, et al. Model for the architecture of claudin-based paracellular ion channels through tight junctions[J]. J Mol Biol, 2015, 427(2): 291-297. DOI:10.1016/j.jmb.2014.10.020
[32] Mazzon E, Cuzzocrea S. Role of TNF-alpha in lung tight junction alteration in mouse model of acute lung inflammation[J]. Respir Res, 2007, 8: 75. DOI:10.1186/1465-9921-8-75
[33] Schlingmann B, Molina SA, Koval M. Claudins: Gatekeepers of lung epithelial function[J]. Semin Cell Dev Biol, 2015, 42: 47-57. DOI:10.1016/j.semcdb.2015.04.009
[34] Monteiro AC, Sumagin R, Rankin CR, et al. JAM-A associates with ZO-2, afadin, and PDZ-GEF1 to activate Rap2c and regulate epithelial barrier function[J]. Mol Biol Cell, 2013, 24(18): 2849-2860. DOI:10.1091/mbc.E13-06-0298
[35] Mitchell LA, Ward C, Kwon M, et al. Junctional adhesion molecule A promotes epithelial tight junction assembly to augment lung barrier function[J]. Am J Pathol, 2015, 185(2): 372-386. DOI:10.1016/j.ajpath.2014.10.010
[36] Kage H, Flodby P, Gao D, et al. Claudin 4 knockout mice: normal physiological phenotype with increased susceptibility to lung injury[J]. Am J Physiol Lung Cell Mol Physiol, 2014, 307(7): L524-536. DOI:10.1152/ajplung.00077.2014
[37] Amoozadeh Y, Dan Q, Anwer S, et al. Tumor necrosis factor-alpha increases claudin-1, 4, and 7 expression in tubular cells: role in permeability changes[J]. J Cell Physiol, 2017, 232(8): 2210-2220. DOI:10.1002/jcp.25736
[38] Wray C, Mao Y, Pan J, et al. Claudin-4 augments alveolar epithelial barrier function and is induced in acute lung injury[J]. Am J Physiol Lung Cell Mol Physiol, 2009, 297(2): L219-227. DOI:10.1152/ajplung.00043.2009
[39] Li G, Flodby P, Luo J, et al. Knockout mice reveal key roles for claudin 18 in alveolar barrier properties and fluid homeostasis[J]. Am J Respir Cell Mol Biol, 2014, 51(2): 210-222. DOI:10.1165/rcmb.2013-0353OC
[40] Chen W, Sharma R, Rizzo AN, et al. Role of claudin-5 in the attenuation of murine acute lung injury by simvastatin[J]. Am J Respir Cell Mol Biol, 2014, 50(2): 328-336. DOI:10.1165/rcmb.2013-0058OC
[41] Dalmasso AP, Goldish D, Benson BA, et al. Interleukin-4 induces up-regulation of endothelial cell claudin-5 through activation of FoxO1: role in protection from complement-mediated injury[J]. J Biol Chem, 2014, 289(2): 838-847. DOI:10.1074/jbc.M113.455766
[42] Jang AS, Concel VJ, Bein K, et al. Endothelial dysfunction and claudin 5 regulation during acrolein-induced lung injury[J]. Am J Respir Cell Mol Biol, 2011, 44(4): 483-490. DOI:10.1165/rcmb.2009-0391OC
[43] Rokkam D, Lafemina MJ, Lee JW, et al. Claudin-4 levels are associated with intact alveolar fluid clearance in human lungs[J]. Am J Pathol, 2011, 179(3): 1081-1087. DOI:10.1016/j.ajpath.2011.05.017
[44] Ward C, Schlingmann B, Stecenko AA, et al. NF-kappaB inhibitors impair lung epithelial tight junctions in the absence of inflammation[J]. Tissue Barriers, 2015, 3(1/2): e982424. DOI:10.4161/21688370.2014.982424
[45] Aslam M, Ahmad N, Srivastava R, et al. TNF-alpha induced NFkappaB signaling and p65 (RelA) overexpression repress Cldn5 promoter in mouse brain endothelial cells[J]. Cytokine, 2012, 57(2): 269-275. DOI:10.1016/j.cyto.2011.10.016
[46] Ding L, Lu Z, Foreman O, et al. Inflammation and disruption of the mucosal architecture in claudin-7-deficient mice[J]. Gastroenterology, 2012, 142(2): 305-315. DOI:10.1053/j.qastro.2011.10.025
[47] Stoltz DA, Meyerholz DK, Welsh MJ. Origins of cystic fibrosis lung disease[J]. N Engl J Med, 2015, 372(4): 351-362. DOI:10.1056/NEJMra1300109
[48] Kaarteenaho-Wiik R, Soini Y. Claudin-1, -2, -3, -4, -5, and -7 in usual interstitial pneumonia and sarcoidosis[J]. J Histochem Cytochem, 2009, 57(3): 187-195. DOI:10.1369/jhc.2008.951566
[49] Simet SM, Wyatt TA, DeVasure J, et al. Alcohol increases the permeability of airway epithelial tight junctions in Beas-2B and NHBE cells[J]. Alcohol Clin Exp Res, 2012, 36(3): 432-442. DOI:10.1111/j.1530-0277.2011.01640x
[50] Lu Z, Kim DH, Fan J, et al. A non-tight junction function of claudin-7-Interaction with integrin signaling in suppressing lung cancer cell proliferation and detachment[J]. Mol Cancer, 2015, 14: 120. DOI:10.1186/s12943-05-0387-0
[51] Hou J, Renigunta A, Yang J, et al. Claudin-4 forms paracellular chloride channel in the kidney and requires claudin-8 for tight junction localization[J]. Proc Natl Acad Sci U S A, 2010, 107(42): 18010-18015. DOI:10.1073/pnas.1009399107
[52] Kielgast F, Schmidt H, Braubach P, et al. Glucocorticoids regulate tight junction permeability of lung epithelia by modulating claudin 8[J]. Am J Respir Cell Mol Biol, 2016, 54(5): 707-717. DOI:10.1165/rcmb.2015-0071OC
[53] Winkelmann A, Noack T. The Clara cell: a "Third Reich eponym"?[J]. Eur Respir J, 2010, 36(4): 722-727. DOI:10.1183/09031936.00146609
[54] Lappi-Blanco E, Lehtonen ST, Sormunen R, et al. Divergence of tight and adherens junction factors in alveolar epithelium in pulmonary fibrosis[J]. Hum Pathol, 2013, 44(5): 895-907. DOI:10.1016/j.humpath.2012.08.016
[55] Ohta H, Chiba S, Ebina M, et al. Altered expression of tight junction molecules in alveolar septa in lung injury and fibrosis[J]. Am J Physiol Lung Cell Mol Physiol, 2012, 302(2): L193-205. DOI:10.1152/ajplung.00349.2010
[56] LaFemina MJ, Sutherland KM, Bentley T, et al. Claudin-18 deficiency results in alveolar barrier dysfunction and impaired alveologenesis in mice[J]. Am J Respir Cell Mol Biol, 2014, 51(4): 550-558. DOI:10.1165/rcmb.2013-0456OC
[57] Hayashi D, Tamura A, Tanaka H, et al. Deficiency of claudin-18 causes paracellular H+ leakage, up-regulation of interleukin-1beta, and atrophic gastritis in mice[J]. Gastroenterology, 2012, 142(2): 292-304. DOI:10.1053/j.gastro.2011.10.040