中华急诊医学杂志  2019, Vol. 28 Issue (1): 7-13
心脏骤停后综合征患者早期集束化治疗进展
朱建良1 , 朱建军1 , 刘励军1     
1 苏州大学附属第二医院急诊医学科 215004

心脏骤停(cardiac arrest, CA)是常见的严重临床事件,目前已经成为发达国家主要致死原因之一[1]。据报道,全球院外心脏骤停(out-of-hospital cardiac arrest, OHCA)的年发病率约为55/10万[2],在美国每年有近42万人发生OHCA,超过20万人发生院内CA[3]。而我国心源性猝死的发生率高达41.8/10万[4]。但CA患者的生存率仍处于较低水平。据统计,美国2015年OHCA和院内CA患者的生存率分别是11.4%和23.8%[5]

CA患者在恢复自主循环后仍有如此高的病死率,与其特有的病理生理特征有关。2008年,由国际复苏联络委员会和美国心脏病协会等多个相关学会将CA患者恢复自主循环后出现的病理生理状态统一命名为心脏骤停后综合征(post-cardiac arrest syndrome, PCAS)[6],并将其分成四个方面的病理损伤过程:①CA后脑损伤;②CA后心肌功能障碍;③系统性缺血-再灌注损伤;④持续的诱发CA的病理过程。

因此,PCAS患者病情十分严重,治疗重点在于扭转PCAS的病理生理表现,及时适当地进行CA后集束化管理[7]。CA后集束化管理是广泛的、结构化的、多学科的管理,主要包括:血流动力学及气体交换的最优化,有指征需要恢复冠脉血流时采用经皮冠状动脉介入术,目标体温管理及血糖控制等治疗[8]。对PCAS患者的上述集束化治疗已成为改善PCAS患者预后的关键环节之一,为此,本文就PCAS患者集束化治疗的新进展做一介绍。

1 早期血流动力学优化 1.1 平均动脉压

对CA患者来说,恢复自主循环后6 h内收缩压 < 90 mmHg(1 mmHg=0.133 kPa)或平均动脉压(mean arterial pressure, MAP) < 65 mmHg是一个重要的预后不良信号[9-10]。但是,目前最佳的血压水平还未被前瞻性临床试验证实。脑灌注压过高可导致全脑充血,加重脑水肿和再灌注损伤[11]。有研究表明,自主循环恢复后最初5 min内提高血压(MAP > 100 mmHg)不能改善神经功能预后[12];但是,也有研究发现,入院时MAP > 100 mmHg是提高患者短期生存率的指标之一[13]。根据目前研究结果,目标MAP低限为65~75 mmHg[14],高限为90~100 mmHg[15],可以改善OHCA患者的预后。而院内CA患者最佳MAP为85~115 mmHg,基础高血压的患者获得良好神经功能预后的MAP阈值为 > 88 mmHg[16]

1.2 中心静脉压

目前大多数研究认为,中心静脉压(central venous pressure, CVP)一般控制在8~12 mmHg为宜[6]。其他脑损伤的研究也表明,患者低血容量状态与其预后恶化具有相关性[17]。在自主循环恢复后,系统性缺血与再灌注可引起血管内血容量的相对不足,故通常需要进行扩容,维持其中心静脉压 > 8 mmHg是合理的选择;但最佳的目标CVP目前仍不明确。至于给予何种复苏液体(晶体或胶体),证据也不充分。但是,持续的CVP明显升高可能有利于诊断心脏骤停的病因,比如心包填塞、肺栓塞、张力性气胸或者急性右心衰[6]

1.3 静脉血氧饱和度

可间接地通过中心静脉血氧饱和度(或混合静脉血氧饱和度),监测机体氧输送与氧消耗两者之间的平衡,只是迄今尚无前瞻性临床试验确定中心静脉血氧饱和度的理想值。目前推荐中心静脉血氧饱和度不低于70%。一项前瞻性观察性研究显示,复苏后行治疗性低温时,中心静脉血氧饱和度维持在67%~72%,生存率最高,维持在70%~75%脑组织血氧饱和度最佳[18]。值得注意的是,尽管CA后患者的组织氧供不足,但是静脉血氧饱和度却有升高,这种现象在心肺复苏过程中大量使用肾上腺素的患者身上尤为常见。

1.4 尿量

尿量是反映患者组织灌注的一个重要指标。尿量下限一般维持在0.5 mL/(kg·h),CA后接受低温疗法者则应维持在1.0 mL/(kg·h)左右[14]

1.5 血红蛋白浓度

PCAS患者最佳血红蛋白浓度有待确定。相关指南建议急性冠脉综合征患者血红蛋白浓度低于80 g/L时输注红细胞[19]。PCAS患者血红蛋白浓度与神经损伤关系的研究目前仅限于观察性研究。一项多中心观察性研究发现,更高的血红蛋白浓度与良好预后有关(126 g/L vs 106 g/L,P < 0.01) [20]。有研究者观察了入院7 d的平均血红蛋白浓度与预后的关系,结果显示神经功能预后良好患者的7 d平均血红蛋白浓度更高(115 g/L vs 107 g/L, P=0.05) [21]。PCAS患者输注红细胞的血红蛋白浓度阈值目前仍不明确,一项回顾性观察性研究显示院内CA患者获得良好神经功能预后的最低血红蛋白浓度是86~90 g/L[22]

2 氧疗

氧疗可以恢复正常的血氧分压及氧输送,这对CA患者至关重要,目前现有指南推荐在心肺复苏期间吸氧体积分数为100%(FiO2=1.0)。但是,越来越多的临床证据显示,高氧血症(PaO2≥300 mmHg)在组织再灌注的早期对缺血后的神经元是有害的,它会导致氧化应激和脑代谢损害,破坏脑白质、海马和纹状体神经元,以及增加病死率[23]。虽然目前还缺乏RCT研究证实,但一些观察性研究的Meta分析也显示了高氧血症与增加病死率的相关性[24-25]。同样,低氧血症(PaO2 < 60 mmHg)也与增加院内病死率显著相关[25]。因此,2015美国心肺复苏指推荐:在心脏骤停患者自主循环恢复后保持其目标血氧饱和度 > 94%即可,当血氧饱和度达到100%时应降低吸入氧体积分数,认为这对减少神经不良后果是有益的[8]。而2017年加拿大心脏骤停复苏后优化治疗推荐PaO2维持在60~200 mmHg[26]

3 二氧化碳分压管理

尽管多数患者在CA后早期即出现脑血管自身调节障碍[27],但是脑血管对动脉二氧化碳(CO2)张力改变的反应性仍然存在[28],临床医生应注意避免过度通气与通气不足。因为过度通气导致低二氧化碳分压(PaCO2 < 35 mmHg)可引起脑血管收缩,脑血流量减少,造成脑缺血[29];反之,通气不足可能导致低氧血症与高碳酸血症(PaCO2 > 45 mmHg);高碳酸血症可引起脑血管舒张,脑组织充血,使颅内压升高,脑血流减少[30];一项回顾性观察研究显示,与正常二氧化碳分压(PaCO2 35~45 mmHg)相比,低碳酸血症(OR=2.43, 95%CI:1.04~5.65)和高碳酸血症(OR=2.20, 95%CI:1.03~4.71)均与恶化神经功能预后有关[29]。而一项大型多中心回顾性研究(16 542例CA患者)显示,与正常二氧化碳分压相比,低碳酸血症(OR=1.12, 95%CI:1.00~1.24)与院内病死率有关,但高碳酸血症在存活患者中具有更高的出院率(OR=1.16, 95%CI:1.03~1.32)[31]。随后的一项前瞻性多中心RCT研究Ⅱ期结果显示,轻度治疗性高碳酸血症(PaCO2 50~55 mmHg)可减少脑损伤的生物标志物——神经元特异性烯醇化酶(neuron-specific enolase, NSE)的释放[32];而对患者神经功能预后的影响仍需等待其Ⅲ期RCT研究(TAME trial Clinicaltrials.gov NCT03114033)的结果。

4 急性冠脉综合征的处理

缺血性心脏疾病是OHCA的最常见的原因,多数病例是急性心肌梗死引起的无脉性室速或室颤[33],因此及时明确及处理阻塞的冠状动脉非常重要。对心电图表现为ST段抬高心肌梗死的OHCA患者,急诊冠状动脉造影及经皮冠状动脉介入治疗(PCI)可显著改善患者近期[34-35]及远期预后[35-36];溶栓治疗也可提高出院存活率和神经功能预后[37];因此,如果无法进行急诊PCI可考虑及时行溶栓治疗[38]。对于非ST段抬高心肌梗死的OHCA患者,部分文献报道常规冠脉造影可以改善患者存活率[34-36],部分文献则未显示益处[39-40]。但是,对高度怀疑因冠脉缺血引起CA的患者,仍然建议尽早行冠脉造影[26]。而目标体温管理联合冠脉造影,在技术上是可行的,也不会延误再灌注治疗[41];一项非随机对照试验报道认为可以改善患者的生存率和神经功能预后[42]

5 目标体温管理

目前指南推荐目标体温管理(targeted temperature management,TTM)适用的人群是自主循环恢复后仍然无反应的CA患者[43-44];但是,对于定义“昏迷”或“无反应”状态所需的神经功能障碍的程度目前没有共识。主要文献中使用的定义包括“对语言指令无反应”或者“格拉斯哥昏迷评分 < 8分”[45-46]。而获益的患者主要是初始心律为可除颤心律的OHCA[47]。2002年两项随机对照临床试验证实,院外室颤性CA自主循环恢复后处于昏迷状态者,在接受12~24 h的32~34 ℃低温治疗后,其转归得到明显改善[15, 45]。对初始心律为非可除颤心律的OHCA患者,部分观察性研究显示患者可以获益[48-49],而部分研究则未显示可以获益[50-51]。对院内CA(初始心律为任何心律)患者,同样是部分观察性研究显示患者可以获益[48-49],而部分研究则未显示可以获益[52]。当然,上述两类患者TTM也没有显示坏处;因此,虽然目前证据尚不充分,但考虑到TTM对其的潜在益处,指南及文献还是对初始心律为非可除颤心律的OHCA患者和院内CA(初始心律为任何心律)患者推荐应用TTM [26]

在最佳目标体温方面,2002年两项随机对照临床试验证实,将患者核心体温控制在32~34 ℃,较正常体温(核心体温 > 37 ℃)患者的神经功能预后有明显改善[15, 45]。2003年国际复苏联盟推荐将OHCA复苏后昏迷的成年患者降温至32~34 ℃,并且这一建议也写入了2005年和2010年的国际心肺复苏指南中。2012年一项小样本(36例患者)的随机对照临床研究发现,以心室颤动为表现的OHCA患者,降温至32 ℃比34 ℃有更好的神经功能转归[53]。2013年一项大样本(939例患者)的随机对照研究却发现,心源性OHCA患者体温控制在36 ℃与降温至33 ℃相比,两组患者神经功能预后未见明显差异[46]。因此,2015年的美国心肺复苏指南及欧洲复苏联盟建议目标体温为32~36 ℃[8, 43];但是,加拿大目标体温管理指南仍然建议目标体温为32~34 ℃[54]。具体何类患者能从较高体温(36 ℃)或较低体温(32~34 ℃)获益更大仍需进一步研究证实。

在目标温度持续时间方面,院外室颤性CA患者的研究显示TTM要维持12或24 h,随后被动复温[15, 45];也有研究报道TTM维持28 h,随后缓慢复温(0.5 ℃/h)[46]。一项回顾性研究并未发现窒息性CA患者TTM 72 h(32 ℃)较24 h(33 ℃)更具有优势[55]。近期一项中等规模(355例OHCA患者)的随机对照试验显示,与TTM(33 ℃)24 h相比,TTM 48 h并未改善患者6个月神经功能预后[56]。虽然TTM的最佳持续时间尚不明确,但目前多数指南推荐至少维持24 h,随后缓慢复温(0.25~0.5 ℃/h),并且积极防治TTM后发热(核心体温 > 37.5 ℃)[8, 43, 54]

在TTM实施时机方面,数项随机对照试验研究OHCA患者复苏后在院前诱导低温治疗(多数为静注冰盐水20~30 mL/kg)对患者神经功能或生存率的影响[57-59]。对其Meta分析结果显示,院前诱导低温治疗并未改善患者的神经功能预后(RR =1.00,95%CI:0.95~1.06)和生存率(RR=0.98,95%CI:0.92~1.04)[54]。并且,其中一项规模最大(1 359例OHCA患者)最严格的研究结果显示,院前使用冰盐水快速静注诱导低温会增加低氧血症、肺水肿以及再发CA的发生率[59]。因此,目前并不推荐院前使用冰盐水快速静注诱导低温治疗。

6 其他治疗 6.1 镇静管理

镇静药物通过降低脑血流和脑组织氧代谢率可以降低PCAS患者升高的颅内压和减少继发性脑缺血[60]。镇静镇痛也有利于控制寒战和癫痫的发作,有助于TTM的诱导和维持[61]。同时镇静治疗也会影响神经功能检查和临床评估的准确性。常用镇静药物主要有丙泊酚、咪唑安定和右美托咪定。其中丙泊酚起效迅速、持续时间短,但是容易引起低血压和大脑低灌注;咪唑安定对血流动力学影响较丙泊酚小,但会延长患者苏醒时间和降低临床检查的准确性,以及延长机械通气时间和ICU住院时间[62];右美托咪定具有作用时间短、轻-中度镇静镇痛效果,不影响临床评估,以及可能的神经保护作用[63],但常常引起低血压和心动过缓。

6.2 惊厥的控制与预防

虽然惊厥可能是CA导致的脑损伤的结果,但是惊厥本身也会引起继发性脑损伤。研究发现,抗癫痫药物的使用不能减少惊厥的发生率以及改善神经功能预后[64]。由于没有使用持续脑电图诊断癫痫发作的标准方法以及药物可能导致的不良反应,预防性使用抗癫痫药物目前并不推荐,但是对反复发作癫痫的治疗应该作为PCAS昏迷患者的标准治疗[61]

6.3 寒颤的控制

持续性寒颤会引起代谢率的提高和心输出量的增加,提高脑组织氧耗和颅内压,以及增加应激反应[65]。寒颤常发生在TTM期间,不利于达到和维持目标温度。因此,在TTM期间对寒颤的管理(包括寒颤的评估和治疗)是非常重要的,应积极控制[61]。寒颤的评估通常使用主观、简单和可靠的临床量表,比如床边寒颤评估量表(bedside shivering assessment scale, BSAS)[65]。寒颤的控制包括药物方法和非药物方法;其中药物方法包括对乙酰氨基酚、丁螺环酮、硫酸镁、哌替啶、芬太尼、丙泊酚、咪唑安定、美托咪定和肌松剂,非药物方法常用温空气毯在非降温部位(面部、手和足)加温[61]

6.4 血糖控制

应激性高血糖在CA患者中非常常见[66]。研究显示CA患者早期高血糖与患者不良神经功能预后和死亡具有相关性[67]。因为对于脑损伤患者,高血糖能增加脑水肿、梗死面积及脑血管通透性,而导致不良预后[68]。血糖变异度与患者预后也有相关性,研究显示,血糖变异度的增加与病死率增加和不良神经功能预后相关[66, 69]。对于PCAS患者的最佳血糖水平的控制,一项回顾性研究表明血糖浓度控制在6.4~7.9 mmol/L可以获得较好的神经功能预后[70];而一项随机对照试验发现血糖浓度控制在4.0~6.0 mmol/L和6.0~8.0 mmol/L生存率没有明显区别[71]。但是,在血糖控制的临床试验中都一致发现,强化治疗更加容易导致低血糖(血糖浓度 < 2.2 mmol/L)的发作,而低血糖与危重病患者较差的预后有关[7]。虽然PCAS患者的最佳目标血糖范围目前仍不明确,但是患者的血糖水平需定期监测,并避免低血糖与高血糖[61]

参考文献
[1] Priori SG, Aliot E, Blomstrom-Lundqvist C, et al. Task force on sudden cardiac death, European Society of Cardiology[J]. Europace, 2002, 4(1): 3-18. DOI:10.1053/euhj.2001.2824
[2] Berdowski J, Berg RA, Tijssen Jan GP, et al. Global incidences of out-of-hospital cardiac arrest and survival rates: Systematic review of 67 prospective studies[J]. Resuscitation, 2010, 81(11): 1479-1487. DOI:10.1016/j.resuscitation.2010.08.006
[3] Go AS, Mozaffarian D, Roger VL, et al. Executive summary: heart disease and stroke statistics-2014 update: a report from the American Heart Association[J]. Circulation, 2014, 129(3): 399-410. DOI:10.1161/01.cir.0000442015.53336.12
[4] Hua W, Zhang LF, Wu YF, et al. Incidence of sudden cardiac death in China: analysis of 4 regional populations[J]. J Am Coll Cardiol, 2009, 54(12): 1110-1118. DOI:10.1016/j.jacc.2009.06.016
[5] Neumar RW. Doubling cardiac arrest sSurvival by 2020: achieving the American Heart Association impact goal[J]. Circulation, 2016, 134(25): 2037-2039. DOI:10.1161/CIRCULATIONAHA.116.025819
[6] Nolan JP, Neumar RW, Adrie C, et al. Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A scientific statement from the International Liaison Committee on Resuscitation; the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; the Council on Stroke[J]. Resuscitation, 2008, 79(3): 350-379. DOI:10.1016/j.resuscitation.2008.09.017
[7] Nolan JP, Soar J. Post resuscitation care--time for a care bundle?[J]. Resuscitation, 2008, 76(2): 161-162. DOI:10.1016/j.resuscitation.2007.12.005
[8] Callaway CW, Donnino MW, Fink EL, et al. Part 8: post–cardiac arrest care: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care[J]. Circulation, 2015, 132(suppl 2): S465-482. DOI:10.1161/CIR.0000000000000262
[9] Trzeciak S, Jones AE, Kilgannon JH, et al. Significance of arterial hypotension after resuscitation from cardiac arrest[J]. Crit Care Med, 2009, 37(11): 2895-2903. DOI:10.1097/CCM.0b013e3181b01d8c
[10] Kilgannon JH, Roberts BW, Jones AE, et al. Arterial blood pressure and neurologic outcome after resuscitation from cardiac arrest[J]. Crit Care Med, 2014, 42(9): 2083-2091. DOI:10.1097/CCM.0000000000000406
[11] Polderman KH. Mechanisms of action, physiological effects, and complications of hypothermia[J]. Crit Care Med, 2009, 37(7 Suppl): S186-202. DOI:10.1097/CCM.0b013e3181aa5241
[12] Müllner M, Sterz F, Binder M, et al. Arterial blood pressure after human cardiac arrest and neurological recovery[J]. Stroke, 1996, 27(2): 59-62. DOI:10.1161/01.str.27.1.59
[13] Lee CC, Tsai MS, Fang CC, et al. Effects of pre-arrest comorbidities on 90-day survival of patients resuscitated from out-of-hospital cardiac arrest[J]. Emerg Med J, 2011, 28(5): 432-436. DOI:10.1136/emj.2009.087593
[14] Sunde K, Pytte M, Jacobsen D, et al. Implementation of a standardised treatment protocol for post resuscitation care after out-of-hospital cardiac arrest[J]. Resuscitation, 2007, 73(1): 29-39. DOI:10.1016/j.resuscitation.2006.08.016
[15] Bernard SA, Gray TW, Buist MD, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia[J]. N Engl J Med, 2002, 346(8): 557-563. DOI:10.1056/nejmoa003289
[16] Wang CH, Huang CH, Chang WT, et al. Optimal blood pressure for favorable neurological outcome in adult patients following in-hospital cardiac arrest[J]. Int J Cardiol, 2015, 195: 66-72. DOI:10.1016/j.ijcard.2015.05.131
[17] Bederson JB, Connolly ES Jr, Batjer HH, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association[J]. Stroke, 2009, 40(3): 994-1025. DOI:10.1161/STROKEAHA.108.191395
[18] Ameloot K, Meex I, Genbrugge C, et al. Hemodynamic targets during therapeutic hypothermia after cardiac arrest: a prospective observational study[J]. Resuscitation, 2015, 91: 56-62. DOI:10.1016/j.resuscitation.2015.03.016
[19] Carson JL, Grossman BJ, Kleinman S, et al. Red blood cell transfusion: a clinical practice guideline from the AABB[J]. Ann Intern Med, 2012, 157(1): 49-58. DOI:10.7326/0003-4819-157-1-201206190-00429
[20] Johnson NJ, Rosselot B, Perman SM, et al. The association between hemoglobin concentration and neurologic outcome after cardiac arrest[J]. J Crit Care, 2016, 36: 218-222. DOI:10.1016/j.jcrc.2016.07.012
[21] Wormsbecker A, Sekhon MS, Griesdale DE, et al. The association between anemia and neurological outcome in hypoxic ischemic brain injury after cardiac arrest[J]. Resuscitation, 2017, 112: 11-16. DOI:10.1016/j.resuscitation.2016.12.010
[22] Wang CH, Huang CH, Chang WT, et al. Association between hemoglobin levels and clinical outcomes in adult patients after in-hospital cardiac arrest: a retrospective cohort study[J]. Intern Emerg Med, 2016, 11(5): 727-736. DOI:10.1007/s11739-015-1386-2
[23] Kilgannon JH, Jones AE, Shapiro NI, et al. Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality[J]. JAMA, 2010, 303(21): 2165-2171. DOI:10.1001/jama.2010.707
[24] Damiani E, Adrario E, Girardis M, et al. Arterial hyperoxia and mortality in critically ill patients: a systematic review and meta-analysis[J]. Crit Care, 2014, 18(6): 711. DOI:10.1186/s13054-014-0711-x
[25] Helmerhorst HJ, Roos-Blom MJ, van Westerloo DJ, et al. Associations of arterial carbon dioxide and arterial oxygen concentrations with hospital mortality after resuscitation from cardiac arrest[J]. Crit Care, 2015, 19: 348. DOI:10.1186/s13054-015-1067-6
[26] Wong GC, van Diepen S, Ainsworth C, et al. Canadian Cardiovascular Society/Canadian Cardiovascular Critical Care Society/Canadian Association of Interventional Cardiology Position Statement on the Optimal Care of the Postarrest Patient[J]. Can J Cardiol, 2017, 33(1): 1-16. DOI:10.1016/j.cjca.2016.10.021
[27] Sundgreen C, Larsen FS, Herzog TM, et al. Autoregulation of cerebral blood flow in patients resuscitated from cardiac arrest[J]. Stroke, 2001, 32(1): 128-132. DOI:10.1161/01.STR.32.1.128
[28] Buunk G, van der Hoeven JG, Meinders AE. Cerebrovascular reactivity in comatose patients resuscitated from a cardiac arrest[J]. Stroke, 1997, 28(8): 1569-1573. DOI:10.1161/01.STR.28.8.1569
[29] Roberts BW, Kilgannon JH, Chansky ME, et al. Association between post resuscitation partial pressure of arterial carbon dioxide and neurological outcome in patients with post-cardiac arrest syndrome[J]. Circulation, 2013, 127(21): 2107-2113. DOI:10.1161/CIRCULATIONAHA.112.000168
[30] Brian JE Jr. Carbon dioxide and the cerebral circulation[J]. Anesthesiology, 1998, 88(5): 1365-1386. DOI:10.1097/00000542-199805000-00029
[31] Schneider AG, Eastwood GM, Bellomo R, et al. Arterial carbon dioxide tension and outcome in patients admitted to the intensive care unit after cardiac arrest[J]. Resuscitation, 2013, 84(7): 927-934. DOI:10.1016/j.resuscitation.2013.02.014
[32] Eastwood GM, Schneider AG, Suzuki S, et al. Targeted therapeutic mild hypercapnia after cardiac arrest: A phaseⅡ multi-centre randomised controlled trial (the CCC trial)[J]. Resuscitation, 2016, 104: 83-90. DOI:10.1016/j.resuscitation.2016.03.023
[33] Rubart M, Zipes DP. Mechanisms of sudden cardiac death[J]. J Clin Invest, 2005, 115(9): 2305-2315. DOI:10.1172/JCI26381
[34] Vyas A, Chan PS, Peter Cram P, et al. Early coronary angiography and survival after out-of-hospital cardiac arrest[J]. Circ Cardiovasc Interv, 2015, 8: e002321. DOI:10.1161/CIRCINTERVENTIONS.114.002321
[35] Geri G, Dumas F, Bougouin W, et al. Immediate percutaneous coronary intervention is associated with improved short- and long-term survival after out-of-hospital cardiac arrest[J]. Circ Cardiovasc Interv, 2015, 8: e002303. DOI:10.1161/CIRCINTERVENTIONS.114.002303
[36] Bergman R, Hiemstra B, Nieuwland W, et al. Long-term outcome of patients after out-of-hospital cardiac arrest in relation to treatment: a single-centre study[J]. Eur Heart J Acute Cardiovasc Care, 2016, 5(4): 328-338. DOI:10.1177/2048872615590144
[37] Richling N, Herkner H, Holzer M, et al. Thrombolytic therapy vs primary percutaneous intervention after ventricular fibrillation cardiac arrest due to acute ST-segment elevation myocardial infarction and its effect on outcome[J]. Am J Emerg Med, 2007, 25(5): 545-550. DOI:10.1016/j.ajem.2006.10.014
[38] O'Gara PT, Kushner FG, Ascheim DD, et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines[J]. Circulation, 2013, 127: e362-425. DOI:10.1161/CIR.0b013e3182742c84
[39] Kleissner M, Sramko M, Kohoutek J, et al. Impact of urgent coronary angiography on mid-term clinical outcome of comatose out-of-hospital cardiac arrest survivors presenting without ST-segment elevation[J]. Resuscitation, 2015, 94: 61-66. DOI:10.1016/j.resuscitation.2015.06.022
[40] Dankiewicz J, Nielsen N, Annborn M, et al. Survival in patients without acute ST elevation after cardiac arrest and association with early coronary angiography: a post hoc analysis from the TTM trial[J]. Intensive Care Med, 2015, 41(5): 856-864. DOI:10.1007/s00134-015-3735-z
[41] Callaway CW, Schmicker RH, Brown SP, et al. Early coronary angiography and induced hypothermia are associated with survival and functional recovery after out-of-hospital cardiac arrest[J]. Resuscitation, 2014, 85(5): 657-663. DOI:10.1016/j.resuscitation.2013.12.028
[42] Stub D, Hengel C, Chan W, et al. Usefulness of cooling and coronary catheterization to improve survival in out-of-hospital cardiac arrest[J]. Am J Cardiol, 2011, 107(4): 522-527. DOI:10.1016/j.amjcard.2010.10.011
[43] Donnino MW, Andersen LW, Berg KM, et al. Temperature management after cardiac arrest: an advisory statement by the Advanced Life Support Task Force of the International Liaison Committee on Resuscitation and the American Heart Association Emergency Cardiovascular Care Committee and the Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation[J]. Circulation, 2015, 132(25): 2448-2456. DOI:10.1161/CIR.0000000000000313
[44] Monsieurs KG, Nolan JP, Bossaert LL, et al. European Resuscitation Council guidelines for resuscitation 2015: section 1. Executive summary[J]. Resuscitation, 2015, 95: 1-80. DOI:10.1016/j.resuscitation.2015.07.038
[45] Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest[J]. N Engl J Med, 2002, 346: 549-556. DOI:10.1056/NEJMoa012689
[46] Nielsen N, Wetterslev J, Cronberg T, et al. Targeted temperature management at 33 degrees C versus 36 degrees C after cardiac arrest[J]. N Engl J Med, 2013, 369(23): 2197-2206. DOI:10.1056/NEJMoa1310519
[47] Chen SQ. Advances in clinical studies of cardiopulmonary resuscitation[J]. World J Emerg Med, 2015, 6(2): 85-93. DOI:10.5847/wjem.j.1920-8642.2015.02.001
[48] Lundbye JB, Rai M, Ramu B, et al. Therapeutic hypothermia is associated with improved neurologic outcome and survival in cardiac arrest survivors of non-shockable rhythms[J]. Resuscitation, 2012, 83(2): 202-207. DOI:10.1016/j.resuscitation.2011.08.005
[49] Perman SM, Grossestreuer AV, Wiebe DJ, et al. The utility of therapeutic hypothermia for post-cardiac arrest syndrome patients with an initial nonshockable rhythm[J]. Circulation, 2015, 132(22): 2146-2151. DOI:10.1161/CIRCULATIONAHA.115.016317
[50] Dumas F, Grimaldi D, Zuber B, et al. Is hypothermia after cardiac arrest effective in both shockable and nonshockable patients?: Insights from a large registry[J]. Circulation, 2011, 123(8): 877-886. DOI:10.1161/CIRCULATIONAHA.110.987347
[51] Vaahersalo J, Hiltunen P, Tiainen M, et al. Therapeutic hypothermia after out-of-hospital cardiac arrest in Finnish intensive care units: the FINNRESUSCI study[J]. Intensive Care Med, 2013, 39(5): 826-837. DOI:10.1007/s00134-013-2868-1
[52] Nichol G, Huszti E, Kim F, et al. Does induction of hypothermia improve outcomes after in-hospital cardiac arrest?[J]. Resuscitation, 2013, 84(5): 620-625. DOI:10.1016/j.resuscitation.2012.12.009
[53] Lopez-de-Sa E, Rey JR, Armada E, et al. Hypothermia in comatose survivors from out-of-hospital cardiac arrest[J]. Circulation, 2012, 126(24): 2826-2833. DOI:10.1161/CIRCULATIONAHA.112.136408
[54] Howes D, Gray SH, Brooks SC, et al. Canadian guidelines for the use of targeted temperature management (therapeutic hypothermia) after cardiac arrest: a joint statement from the Canadian Critical Care Society (CCCS), Canadian Neurocritical Care Society (CNCCS), and the Canadian Critical Care Trials Group (CCCTG)[J]. Resuscitation, 2016, 98: 48-63. DOI:10.1016/j.resuscitation.2015.07.052
[55] Lee BK, Lee SJ, Jeung KW, et al. Outcome and adverse events with 72-hour cooling at 32 degrees C as compared to 24-hour cooling at 33 degrees C in comatose asphyxial arrest survivors[J]. Am J Emerg Med, 2014, 32(4): 297-301. DOI:10.1016/j.ajem.2013.11.046
[56] Kirkegaard H, Søreide E, de Haas I, et al. Targeted temperature management for 48 vs 24 hours and neurologic outcome after out-of-hospital cardiac arrest a randomized clinical trial[J]. JAMA, 2017, 318(4): 341-350. DOI:10.1001/jama.2017.8978
[57] Bernard SA, Smith K, Cameron P, et al. Induction of prehospital therapeutic hypothermia after resuscitation from nonventricular fibrillation cardiac arrest[J]. Crit Care Med, 2012, 40(3): 747-753. DOI:10.1097/CCM.0b013e3182377038
[58] Debaty G, Maignan M, Savary D, et al. Impact of intra-arrest therapeutic hypothermia in outcomes of prehospital cardiac arrest: a randomized controlled trial[J]. Intensive Care Med, 2014, 40(12): 1832-1842. DOI:10.1007/s00134-014-3519-x
[59] Kim F, Nichol G, Maynard C, et al. Effect of prehospital induction of mild hypothermia on survival and neurological status among adults with cardiac arrest: a randomized clinical trial[J]. JAMA, 2014, 311(1): 45-52. DOI:10.1001/jama.2013.282173
[60] Keegan MT. Sedation in the neurologic intensive care unit[J]. Curr Treat Options Neurol, 2008, 10(2): 111-125. DOI:10.1007/s11940-008-0013-1
[61] Nakashima R, Hifumi T, Kawakita K, et al. Critical care management focused on optimizing brain function after cardiac arrest[J]. Circ J, 2017, 81(4): 427-439. DOI:10.1253/circj.CJ-16-1006
[62] Roberts DJ, Hall RI, Kramer AH, et al. Sedation for critically ill adults with severe traumatic brain injury: A systematic review of randomized controlled trials[J]. Crit Care Med, 2011, 39(12): 2743-2751. DOI:10.1097/CCM.0b013e318228236f
[63] Degos V, Charpentier TL, Chhor V, et al. Neuroprotective effects of dexmedetomidine against glutamate agonist-induced neuronal cell death are related to increased astrocyte brain-derived neurotrophic factor expression[J]. Anesthesiology, 2013, 118(5): 1123-1132. DOI:10.1097/ALN.0b013e318286cf36
[64] Hofmeijer J, Tjepkema-Cloostermans MC, Blans MJ, et al. Unstandardized treatment of electroencephalographic status epilepticus does not improve outcome of comatose patients after cardiac arrest[J]. Front Neurol, 2014, 5: 39. DOI:10.3389/fneur.2014.00039
[65] Badjatia N, Strongilis E, Gordon E, et al. Metabolic impact of shivering during therapeutic temperature modulation: The bedside shivering assessment scale[J]. Stroke, 2008, 39(12): 3242-3247. DOI:10.1161/STROKEAHA.108.523654
[66] Beiser DG, Carr GE, Edelson DP, et al. Derangements in blood glucose following initial resuscitation from in-hospital cardiac arrest: A report from the national registry of cardiopulmonary resuscitation[J]. Resuscitation, 2009, 80(6): 624-630. DOI:10.1016/j.resuscitation.2009.02.011
[67] Nurmi J, Boyd J, Anttalainen N, et al. Early increase in blood glucose in patients resuscitated from out-of-hospital ventricular fibrillation predicts poor outcome[J]. Diabetes Care, 2012, 35(3): 510-512. DOI:10.2337/dc11-1478
[68] Prakash A, Matta BF. Hyperglycaemia and neurological injury[J]. Curr Opin Anaesthesiol, 2008, 21(5): 565-569. DOI:10.1097/ACO.0b013e32830f44e4
[69] Cueni-Villoz N, Devigili A, Delodder F, et al. Increased blood glucose variability during therapeutic hypothermia and outcome after cardiac arrest[J]. Crit Care Med, 2011, 39(10): 2225-2231. DOI:10.1097/CCM.0b013e31822572c9
[70] Losert H, Sterz F, Roine RO, et al. Strict normoglycaemic blood glucose levels in the therapeutic management of patients within 12 h after cardiac arrest might not be necessary[J]. Resuscitation, 2008, 76(2): 214-220. DOI:10.1016/j.resuscitation.2007.08.003
[71] Oksanen T, Skrifvars MB, Varpula T, et al. Strict versus moderate glucose control after resuscitation from ventricular fibrillation[J]. Intensive Care Med, 2007, 33(12): 2093-2100. DOI:10.1007/s00134-007-0876-8