中华急诊医学杂志  2018, Vol. 27 Issue (7): 757-763
Sonic hedgehog信号通路参与脂多糖诱导肺微血管内皮细胞表达RACK1
王巾枚, 尤青海, 牛成成, 贾丹, 蒋利娟     
230022 合肥,安徽医科大学第一附属医院呼吸内科 (王巾枚、尤青海、贾丹、蒋利娟),消毒供应中心(牛成成)
摘要: 目的 探讨脂多糖(lipopolysaccharide, LPS)是否影响大鼠肺微血管内皮细胞(rat puhnonary microvascular endothelial cells, RPMVEC)表达活化的蛋白激酶C受体1(protein kinase C receptor 1, RACK1)及Sonic hedgehog(SHH)信号通路对其表达的影响。方法 取健康雄性、体质量100~120 g、SPF级SD大鼠,于安徽医科大学第一附属医院呼吸内科实验室,体外培养RPMVEC,免疫细胞化学法检测RACK1蛋白在RPMVEC表达,随机分为:LPS和SAG干预实验:(1)LPS量效组,0.1、1、10 mg/L LPS与RPMVEC孵育8 h; LPS时效组,10 mg/L LPS与RPMVEC孵育0、2、4、8、12、24 h。(2)SAG量效组,0.1、1、10 μmol/L RPMVEC孵育8 h; SAG时效组,1 μmol/L SAG与RPMVEC孵育0、2、4、8、12、24 h。(3) LPS+SAG干预组,10 mg/L LPS预孵育1 h后加入1 μmol/L SAG继续孵育8 h; 设空白组、LPS组和SAG组为对照。所有干预结束后Western blot法检测RACK1蛋白表达及RT-PCR法检测GLI-1 mRNA表达,多组变量间比较采用单因素方差分析,组间两两比较采用t检验,以P < 0.05为差异有统计学意义。结果 免疫细胞化学染色法显示RPMVEC表达RACK1。(1)LPS量效组(0、0.1、1、10 mg/L):RACK1蛋白表达量随LPS浓度增加而升高,组间比较:P < 0.05;GLI-1 mRNA表达量为(1.109±0.063)、(1.039±0.135)、(0.813±0.066)、(0.770±0.105),1 mg/L组与10 mg/L组比较P > 0.05,其余组间比较P < 0.05;LPS时效组:LPS作用RPMVEC诱导RACK1蛋白自2 h表达上调(0.370±0.010),12 h达最高(1.296±0.048),组间比较差异有统计学意义(F=1 272.204,P < 0.05);而GLI-1 mRNA表达自2 h开始下调(0.929±0.007),组间比较差异有统计学意义(F=306.609,P < 0.05)。(2)SAG量效组(0、0.1、1、10 μmol/L):RACK1蛋白表达量未见明显变化,组间比较P > 0.05,GLI-1 mRNA表达量为(1.109±0.063)、(1.169±0.052)、(3.468±0.128)、(3.434±0.054),0 μmol/L组与0.1 μmol/L组比较,1 μmol/L组与10 μmol/L组比较P > 0.05,其余组间比较P < 0.05。SAG时效组:SAG作用RPMVEC诱导RACK1蛋白表达与对照组比较差异无统计学意义(P > 0.05);GLI-1 mRNA表达自2 h上调(3.027 ± 0.065),组间比较差异有统计学意义(F=132.841,P < 0.05)。(3)LPS+SAG干预组:LPS+SAG作用RPMVEC表达RACK1蛋白量较LPS组下调(0.831±0.040 vs. 1.189±0.149, P < 0.05),GLI-1 mRNA较LPS组上调(2.720±0.129 vs. 0.796±0.082, P < 0.05)。结论 RACK1表达增加参与LPS刺激RPMVEC过程,激活的SHH信号通路可下调LPS诱导RACK1表达。
关键词: 脂多糖     肺微血管内皮细胞     活化的蛋白激酶C受体1     Sonic hedgehog信号通路     急性呼吸窘迫综合征    
The Sonic hedgehog signaling pathway involved in the expression of RACK1 in the pulmonary microvascular endothelial cells induced by lipopolysaccharide
Wang Jinmei , You Qinghai , Niu Chengcheng , Jia Dan , Jiang Lijuan     
Department of Respiratory Medicine(Wang JM, You QH, Jia D, Jiang LJ), Central Terile Supply Center(Niu CC), the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
Abstract: Objective To explore the effect of expression of protein kinase C receptor 1(RACK1) induced by lipopolysaccharide (LPS) on Sonic hedgehog(SHH) signaling pathway in rat puhnonary microvascular endothelial cells (RPMVEC). Methods The healthy male SPF grade SD rat with 100-120 g body weight were gotten from the laboratory animal center of Anhui province. Using immunocytochemistry method, the expression of RACK1 protein in RPMVECs was detected, cultured RPMVECs were randomly divided into different groups as LPS dose-dependent group, SAG(smoothened Agonist, a SHH signaling pathway specific agonist) dose-dependent group, LPS time-dependent group, SAG time-dependent group and LPS+SAG group. In LPS dose-dependent groups, RPMVECs were cultured with 0.1, 1, 10 mg/L LPS for 8 h. In LPS time-dependent groups, RPMVECs were cultured with 10 mg/L LPS for 0, 2, 4, 8, 12, 24 h. In SAG dose-dependent groups, RPMVECs were cultured with 0.1, 1, 10 μmol/L for 8 h. In SAG time-dependent groups, RPMVECs were cultured with 1 μmol/L SAG for 0, 2, 4, 8, 12, 24 h. In LPS+SAG group, RPMVECs were cultured with 1 μmol/L SAG 8 h after 10 mg/L LPS treatment for 1 h. In addition, blank group, LPS group and SAG group were set for control. Western blot were used to detect the level of RACK1 and RT-PCR were used to detect the expression of GLI-1 mRNA after intervention. Results Immunocytochemistry revealed that RACK1 were present in RPMVEC. 1. In LPS dose-dependent groups (0, 0.1, 1, 10 mg/L), the level of RACK1 elevated as LPS dose increased correspondingly with inter-group difference (P < 0.05); the relative expression levels of GLI-1 mRNA were (1.109 ± 0.063), (1.039 ± 0.135), (0.813 ± 0.066), (0.770 ± 0.105), (1 mg/L vs. 10 mg/L, P > 0.05; the rest P < 0.05). In LPS time-dependent groups, the relative expression level of RACK1 at 2 h (0.370 ± 0.010) was higher than that at 0 h (0.329 ± 0.008), peaked at 12 h (1.296 ± 0.048), and compared with 0 h, there was significant differences (F=1 272.204, P < 0.05). The relative expression level of GLI-1 mRNA was decreased at 2 h (0.929 ± 0.007), and compared with 0 h(1.089 ± 0.042), there was significant differences (F=306.609, P < 0.05). 2. In SAG dose-dependent groups, there was no significant difference in level of RACK1 between groups(all P > 0.05). The relative expression levels of GLI-1 mRNA were (1.109 ± 0.063), (1.169 ± 0.052), (3.468 ± 0.128), (3.434 ± 0.054), (0 μmol/L vs. 0.1 μmol/L and 1 μmol/L vs. 10 μmol/L, P > 0.05, the rest P < 0.05). Among SAG time-dependent groups, there was no significant difference in levels of RACK1 protein(P > 0.05). The relative expression level of GLI-1 mRNA increased at 2 h (3.027 ± 0.065), and compared with 0 h (2.651 ± 0.123), there was significant differences (F=132.841, P < 0.05). 3. In LPS+SAG intervention groups, the expression of RACK1 was lower than that in LPS group (0.831 ± 0.040 vs. 1.189 ± 0.149, P < 0.05), and the expression of GLI-1 mRNA was higher than that in LPS group (2.720 ± 0.130 vs. 0.796 ± 0.082, P < 0.05). Conclusions The LPS up-regulates the expression of RACK1 in RPMVECs, and the activated SHH signaling pathway can down-regulate the expression of RACK1 induced by LPS in RPMVECs.
Key words: Lipopolysaccharide     Pulmonary microvascular endothelial cells     Receptor for activated C kinase 1     Sonic hedgehog signaling pathways     Acute respiratory distress syndrome    

急性呼吸窘迫综合征(acute respiratory distress syndrome, ARDS)是在严重感染、休克、创伤及烧伤等非心源性疾病过程中,因弥漫性肺间质及肺泡水肿导致的急性呼吸功能不全或衰竭。内皮细胞损伤是其主要的发病机制和病理特点[1]。活化的蛋白激酶C受体1(receptor for activated C kinase 1, RACK1)是G蛋白β亚基的同族体,可结合多种蛋白,调节细胞生理功能,参与多种疾病发生发展[2]。RACK1可与激活的蛋白激酶C(protein kinase C, PKC)、丝裂原激活蛋白激酶、c-Jun N-terminalkinase(JNK)等蛋白结合进而调控相关信号通路[3],而上述信号通路与ARDS发病密切相关[4-5]。Sonic hedgehog(SHH)信号通路主要由SHH蛋白配体、PTCH膜受体、SMOH效应器以及转录因子GLI家族组成,因其分布广泛而备受重视[6]。研究发现SHH信号通路参与ARDS发病过程[7],而RACK1参与SHH信号通路激活[8],RACK1是否参与ARDS发病及是否受SHH信号通路调控尚未见报道。本研究旨在建立脂多糖(lipopolysaccharide, LPS)致大鼠肺微血管内皮细胞(rat puhnonary microvascular endothelial cells, RPMVEC)损伤模型,探讨LPS致损过程中RACK1蛋白表达及SHH信号通路对其表达的影响。

1 材料与方法 1.1 试剂及仪器

DMEM培养基(美国Hyclone公司),胎牛血清(澳大利亚Gibco公司),RACK1单克隆抗体(ab129084,英国Abcom公司)、辣根过氧化物酶标记的羊抗兔IgG(北京中杉金桥),Smoothened Agonist(SAG,SHH信号通路特异性激动剂,美国Selleck公司),免疫组化试剂盒(北京,中杉金桥),逆转录试剂盒(AT341,北京,全式金公司),梯度基因扩增仪(TProfessional PCR,德国BIOMETRA公司),防脱载玻片; 其余实验试剂均为国产分析纯试剂自行配制,SD大鼠购自安徽医科大学动物实验中心[SPF级,合格证号:SCXK(皖)2011-002]。

1.2 大鼠PMVEC分离培养及鉴定

按照本实验室建立的方法及参考文献进行[9]。取SPF级SD大鼠的肺脏,体外培养RPMVEC,随机分为:(1)LPS量效组,0.1、1、10 mg/L LPS与RPMVEC孵育8 h; LPS时效组,10 mg/L LPS与RPMVEC孵育0、2、4、8、12、24 h。(2)SAG量效组,0.1、1、10 μmol/L RPMVEC孵育8 h; SAG时效组,1 μmol/L SAG与RPMVEC孵育0、2、4、8、12、24 h。(3)LPS+SAG干预组,10 mg/L LPS预孵育1 h后加入1 μmol/L SAG继续孵育8 h; 设空白组、LPS组和SAG组为对照(n=6)。

1.3 免疫细胞化学染色法检测RACK1表达

将生长良好的1×105/mL RPMVEC接种于六孔板中的载玻片上,细胞生长稳定后,取出细胞爬片,4 %多聚甲醛固定,PBS冲洗,参照免疫组化试剂盒说明书操作,其中RACK1抗体稀释度为1:50,最后滴加DAB显色,自来水冲洗中止反应,苏木精轻度复染,梯度乙醇脱水,二甲苯透明后树胶封片拍照。

1.4 Western blot检测RACK1表达

裂解3代RPMVEC 30 min后收集蛋白。选择10 %分离胶和5 %浓缩胶进行电泳,蛋白转移至PVDF膜上,封闭液中室温封闭2 h后,TBS-T溶液洗膜,与RACK1单克隆抗体(1:1 000)4 ℃过夜,辣根过氧化物酶标记的山羊抗兔IgG溶液(1:20 000)室温90 min孵育,自动曝光机曝光,保存条带。

1.5 逆转录聚合酶链反应法检测GLI-1 mRNA表达

胰酶消化RPMVEC,Trizol一步法提取总RNA,加入无核酶水20 μL,-80 ℃保存。取溶于无核酶水中的RNA模板5 μL,70 ℃水浴变性,参照反转录试剂盒说明书完成cDNA合成。cDNA再进行PCR扩增(扩增条件为:95 ℃ 2 min预变性,95 ℃ 15 s、60 ℃ 1 min循环40次,60 ℃ 30 s,60 ℃延伸10 min)。1 %琼脂糖凝胶电泳扩增产物,凝胶成像分析系统成像。各样本的基因表达量用该样本的吸光度值与内参β-actin基因条带的吸光度值之比表示。GL I-1基因(AY695056)引物如下:GLI-1-FP:5’-CCAATCACAAGTCAGGTTCCT-3’; GLI-1-RP5’-CCTATGTGAAGCCCTATTTGCC-3’。内参β-actin-FP:5’-ATCCATCCCAATCATAGTAAC-3’,β-actin-RP:5’-CTCAAGGTCCCAACAGC-3’[10]

1.6 实验分组和处理

(1)量效实验:分别以0.1、1、10 mg/L LPS与RPMVEC孵育8 h,以0.1、1、10 μmol/L SAG与RPMVEC孵育8 h。(2)时效实验:以10 mg/L LPS与RPMVEC孵育0、2、4、8、12、24 h,以1 μmol/L SAG与RPMVEV孵育0、2、4、8、12、24 h。(3)SAG+LPS干预组:以10 mg/L LPS预孵育1 h后加入1 μmol/L SAG继续孵育8 h,设空白组、LPS组和SAG组为对照各组。干预结束后均检测RACK1蛋白及GLI-1 mRNA表达。

1.7 统计学方法

采用SPSS 17.0统计学软件进行分析,计量资料以均数±标准差(x±s)表示,多组变量间比较采用单因素方差分析,组间两两比较采用SNK-q检验,以P < 0.05为差异有统计学意义。

2 结果 2.1 免疫细胞化学染色法检测RACK1在RPMVEC表达

光学显微镜观察RACK1在RPMVEC细胞中表达,见图 1

免疫细胞化学染色检测RPMVEC胞质及胞核被染成棕黄色(A:200×; B:400×); 阴性对照胞核及胞质被染成紫蓝色(C:200×; D:400×) 图 1 免疫细胞化学染色法检测RACK1在RPMVEC表达 Figure 1 Immunocytochemistry method to detect RACK1 expression in RPMVECs
2.2 不同浓度LPS对RPMVEC表达RACK1及GLI-1 mRNA的影响

LPS未刺激时,RPMVEC低表达RACK1,0.1、1、10 mg/L LPS刺激诱导RACK1表达升高,各组间比较差异有统计学意义(P < 0.05); LPS未刺激时,RPMVEC低表达GLI-1mRNA,0.1、1、10 mg/L LPS刺激RPMVEC表达GLI-1mRNA调低,1 mg/L组与10 mg/L组比较P > 0.05,其余各组间比较差异有统计学意义(P < 0.05),见图 2表 1

LPS:脂多糖; RACK1:活化的蛋白激酶C受体1 图 2 不同浓度LPS对RPMVEC表达RACK1及GLI-1 mRNA的影响 Figure 2 Expression of RACK1 and GLI-1mRNA in RPMVECs stimulated by different concentration of LPS

表 1 不同浓度LPS对RPMVEC表达RACK1及GLI-1 mRNA的影响(x±s, n=6) Table 1 Expression of RACK1 and GLI-1mRNA in RPMVECs stimulated by different concentration of LPS(x±s, n=6)
孵育浓度 RACK1 GLI-1mRNA
0 mg/L 0.354±0.025 1.109±0.063
0.1 mg/L 0.451±0.025a 1.039±0.135
1 mg/L 0.710±0.052ab 0.813±0.066ab
10 mg/L 1.195±0.075abc 0.770±0.105ab
F 312.120 24.321
P < 0.01 < 0.01
注:与0 mg/L组比较,aP < 0.05;与0.1 mg/L组比较,bP < 0.05;与1 mg/L组比较,cP < 0.05
2.3 LPS刺激不同时间诱导RPMVEC表达RACK1及GLI-1 mRNA

10 mg/L LPS刺激2 h后,RACK1表达调高,12 h达最高,24 h开始降低(图 2A),组间比较差异有统计学意义(F=1 272.204,P < 0.05); LPS刺激2 h时GLI-1 mRNA表达调低,8 h达最低,12 h后开始恢复(图 2B),组间比较差异有统计学意义(F=306.609,P < 0.05),见表 2

表 2 LPS刺激不同时间诱导RPMVEC表达RACK1及GLI-1 mRNA(x±s, n=6) Table 2 Expression of RACK1 and GLI-1mRNA in RPMVEC stimulated by different lengths of time stimulated by LPS(x±s, n=6)
孵育时间 RACK1 GLI-1mRNA
0 h 0.329±0.008 1.088±0.042
2 h 0.370±0.010a 0.929±0.007a
4 h 0.497±0.021ab 0.890±0.017ab
8 h 0.599±0.015abc 0.671±0.014abc
12 h 1.296±0.048abcd 0.742±0.012abcd
24 h 0.687±0.019abcde 0.802±0.010abcde
F 1 272.204 306.609
P < 0.01 < 0.01
注:与0 h组比较,aP < 0.05;与2 h组比较,bP < 0.05;与4 h组比较,cP < 0.05;与8 h组比较,dP < 0.05;与12 h组比较,eP < 0.05
2.4 不同浓度SAG对RPMVEC表达RACK1及GLI-1 mRNA的影响

0.1、1、10 μmol/L SAG刺激对各组RACK1表达无影响(均P > 0.05); SAG未刺激时RPMVEC低表达GLI-1mRNA,0 μmol/L与0.1 μmol/L比较、1 μmol/L与10 μmol/L比较GLI-1mRNA表达无统计学意义(P > 0.05),其余组间比较P < 0.05,见图 4表 3

LPS:脂多糖; RACK1:活化的蛋白激酶C受体1 图 3 LPS刺激不同时间诱导RPMVEC表达RACK1及GLI-1 mRNA Figure 3 Expression of RACK1 and GLI-1mRNAin RPMVEC stimulated by different lengths of time stimulated by LPS

LPS:脂多糖; RACK1:活化的蛋白激酶C受体1 图 4 不同浓度SAG对RPMVEC表达RACK1及GLI-1 mRNA的影响 Figure 4 Expression of RACK1 and GLI-1mRNA in RPMVEC stimulated by different concentration of SAG

表 3 不同浓度SAG对RPMVEC表达RACK1及GLI-1 mRNA的影响(x±s, n=6) Table 3 Expression of RACK1 and GLI-1mRNA in RPMVEC stimulated by different concentration of SAG(x±s, n=6)
孵育浓度 RACK1 GLI-1mRNA
0 μmol/L 0.354±0.026 1.109±0.063
0.1 μmol/L 0.365±0.014 1.169±0.052a
1 μmol/L 0.349±0.025 3.468±0.128ab
10 μmol/L 0.360±0.011 3.434±0.054ab
F 0.733 1 651.006
P 0.544 < 0.01
注:与0 μmol/L组比较,aP < 0.05;与0.1 μmol/L组比较,bP < 0.05
2.5 SAG刺激不同时间诱导RPMVEC表达RACK1及GLI-1 mRNA

SAG对RACK1表达无影响,组间比较差异无统计学意义(F=1.140,P > 0.05)。SAG刺激2 h后GLI-1 mRNA表达调高,4 h组与8 h组比较P > 0.05,其余组间比较均P < 0.05。见表 4图 5

表 4 SAG刺激不同时间对RPMVEC表达RACK1及GLI-1 mRNA的影响(x±s, n=6) Table 4 Expression of RACK1 and GLI-1mRNA in RPMVEC stimulated at different lengths of time by SAG(x±s, n=6)
孵育时间 RACK1 GLI-1mRNA
0 h 1.095±0.086 2.651±0.123
2 h 1.111±0.122 3.027±0.065a
4 h 1.162±0.046 3.437±0.081ab
8 h 1.161±0.097 3.494±0.121ab
12 h 1.101±0.082 3.678±0.044abcd
24 h 1.283±0.342 3.796±0.086abcde
F 1.140 132.841
P 0.360 < 0.01
注:与0 h组比较,aP < 0.05;与2 h组比较,bP < 0.05;与4 h组比较,cP < 0.05;与8 h组比较,dP < 0.05;与12 h组比较,eP < 0.05

LPS:脂多糖,RACK1:活化的蛋白激酶C受体1 图 5 SAG刺激不同时间诱导RPMVEC表达RACK1及GLI-1 mRNA Figure 5 Expression of RACK1 and GLI-1mRNA in RPMVEC stimulated at different lengths of time by SAG
2.6 SAG对LPS诱导RPMVEC表达RACK1、GLI-1 mRNA的影响

LPS+SAG刺激RPMVEC表达RACK1较LPS组下调,GLI-1 mRNA较LPS组上调,差异有统计学意义(P < 0.05);见表 5。SAG刺激RPMVEC表达GLI-1 mRNA与空白组比较上调,差异有统计学意义(P < 0.05),RACK1表达与空白组比较差异无统计学意义(P > 0.05),见图 6

表 5 SAG对LPS诱导RPMVEC中RACK1及GLI-1 mRNA表达的干预作用(x±s, n=6) Table 5 Intervention effect of SAG transferase on the expression of RACK1 and GLI-1mRNA in RPMVEC induced by LPS(x±s, n=6)
组别 RACK1 GLI-1mRNA
空白组 0.703±0.020 2.097±0.133
SAG组 0.729±0.055 3.567±0.220a
LPS+SAG组 0.831±0.040ab 2.720±0.130ab
LPS组 1.189±0.149abc 0.796±0.082abc
F 44.287 363.274
P < 0.01 < 0.01
注:与空白组比较,aP < 0.05;与SAG组比较,bP < 0.05;与LPS+SAG组比较,cP < 0.05

LPS:脂多糖,RACK1:活化的蛋白激酶C受体1 图 6 SAG对LPS诱导RPMVEC中RACK1及GLI-1 mRNA表达的干预作用 Figure 6 Intervention effect of SAG transferase on the expression of RACK1 and GLI-1mRNA in RPMVEC induced by LPS
3 讨论

RACK1为普遍表达的游离支架蛋白,有多个WD40位点,可结合PKC、cAMP-specific phosphodiesterase-4D5等蛋白[11],维持蛋白活化状态,引导其前往特定区域,介导多种信号通路激活。研究发现在大鼠脑缺血炎症致神经损伤模型中,激活星形胶质细胞的TNF-R1-FAN-RACK1-nSMase2信号通路促进中性磷脂酶积累,损伤脑神经细胞[12]; Waiskopf等[13]发现氟西汀抑制LPS诱导RACK1和PKCβⅡ过度表达,进而阻断炎症,并发现AChe-RACK1-PKCβⅡ存在交互作用; 另外,研究发现RACK1参与PKCβ激活,再作用于THP-1细胞或前白细胞,促进IL-6、IL-8和CD84生成[14]。RACK1与PKC、PDE4D5、JNK等蛋白关系密切,推测其可能通过丝裂原激活蛋白激酶、JNK、蛋白激酶A(protein kinase A, PKA)等信号通路介导LPS刺激RPMVEC。本实验发现在LPS刺激RPMVEC过程中,RACK1表达量呈时间依赖方式及浓度依赖方式增加,提示RACK1参与LPS刺激RPMVEC过程,其表达量的变化与LPS刺激变化密切相关。cAMP是细胞内重要的第二信使,可传导细胞内外各种信息,在多种炎症信号传导通路中起重要作用,cAMP可激活PKA,PKA活化亚基转位进入细胞核,促进TNF-α、IL-1-β的分泌[15]; cAMP可激活Epac蛋白,进而活化Rap1,调控细胞和细胞外基质蛋白、纤连蛋白的接触和黏连,RACK1可调控cAMP表达,故推测RACK1通过cAMP/PKA信号通路参与LPS刺激RPMVEC过程。

SHH信号通路参与如细胞增殖和保护、细胞相互作用等过程,并在炎症和组织修复过程中发挥重要作用。Yang等[7]发现LPS损伤PMVEC过程中核内GLI-1蛋白表达受到抑制,激活SHH信号通路可保护LPS致RPMVEC通透性增高。Jiang等[16]发现低密度脂蛋白损伤大鼠脑微血管内皮细胞过程中,SHH、Smo等SHH信号通路相关蛋白表达受抑,激活SHH信号通路逆转氧化低密度脂蛋白诱导的内皮细胞功能障碍,以上提示SHH通路对内皮细胞起保护性作用。本研究发现,LPS诱导GLI-1mRNA表达量成时间依赖方式及浓度依赖性下调,与Yang等[7]结果一致,间接提示SHH信号通路可保护LPS刺激RPMVEC反应。

RACK1与cAMP联系密切,通过调控cAMP表达,参与相关信号通路激活; 研究发现RACK1可结合β-actin蛋白或通过增加PDE4D5易感性调控cAMP相关信号通路[17]及PKA信号通路[11, 18]。研究证实SHH信号通路与PKA信号通路存在拮抗现象,SHH信号通路未激活时,已转录激活的GLI-1蛋白与微管蛋白结合无法进入细胞核内,会逐渐被PKA降解[19],在小脑颗粒细胞中PKA可通过抑制垂体腺苷酸环化酶多肽进而下调GLI-1mRNA表达,参与SHH信号通路调控[20],SHH信号通路可通过Ca2+通道降低纤毛内的cAMP含量进而下调PKA促进GLI-1mRNA表达[21],以上研究提示SHH信号通路和cAMP相关信号通之间可相互影响。本研究发现SHH信号通路激活可显著下调LPS诱导的RACK1高表达,但单独SHH信号通路激活并不影响RACK1表达,因此,推测SHH信号通路的保护作用可能是通过抑制LPS诱导RACK1表达量实现,因SHH信号通路与cAMP的关系推测其可能通过抑制cAMP的激活而抑制RACK1表达,但具体机制仍需要进一步探讨。

综上所述,本研究证实RACK1在RPMVEC中表达,且与LPS刺激浓度及时间关系密切,因此,推测RACK1可能参与LPS刺激RPMVEC过程; 激活SHH信号通路可下调LPS诱导的RACK1高表达,故SHH信号通路可能通过下调RACK1表达量减轻LPS刺激RPMVEC反应,因此,研究SHH信号通路与RACK1蛋白间的关系可为ARDS治疗提供新思路。

参考文献
[1] Nelin LD, White HA, Jin Y, et al. The Src family tyrosine kinases src and yes have differential effects on inflammation-induced apoptosis in human pulmonary microvascular endothelial cells[J]. Am J Physiol Lung Cell Mol Physiol, 2016, 310(9): L880-888. DOI:10.1152/ajplung.00306.2015
[2] Gandin V, Senft D, Topisirovic I, et al. RACK1 Function in Cell Motility and Protein Synthesis[J]. Genes Cancer, 2013, 4(9/10): 369-377. DOI:10.1177/1947601913486348
[3] Li JJ, Xie D. RACK1, a versatile hub in cancer[J]. Oncogene, 2014, 34(15): 1890-1898. DOI:10.1038/onc.2014.127
[4] Kong G, Huang X, Wang L, et al. Astilbin alleviates LPS-induced ARDS by suppressing MAPK signaling pathway and protecting pulmonary endothelial glycocalyx[J]. Int Immunopharmacol, 2016, 36: 51-58. DOI:10.1016/j.intimp.2016.03.039
[5] Lai JB, Qiu CF, Chen CX, et al. Inhibition of c-Jun N-terminal kinase signaling pathway alleviates lipopolysaccharide-induced acute respiratory distress syndrome in rats[J]. Chin Med J (Engl), 2016, 129(14): 1719-1724. DOI:10.4103/0366-6999.185867
[6] Kugler MC, Joyner AL, Loomis CA, et al. Sonic hedgehog signaling in the lung. from development to disease[J]. Am J Respir Cell Mol Bio, 2015, 52(1): 1-13. DOI:10.1165/rcmb.2014-0132TR
[7] Yang Y, Li Q, Deng Z, et al. Protection from lipopolysaccharide-induced pulmonary microvascular endothelial cell injury by activation of hedgehog signaling pathway[J]. Mol Biol Rep, 2010, 38(6): 3615-3622. DOI:10.1007/s11033-010-0473-8
[8] Shi S, Deng YZ, Zhao JS, et al. RACK1 promotes non-small-cell lung cancer tumorigenicity through activating sonic hedgehog signaling pathway[J]. J Bio Chem, 2012, 287(11): 7845-7858. DOI:10.1074/jbc.M111.315416
[9] You QH, Sun GY, Wang N, et al. Interleukin-17F-induced pulmonary microvascular endothelial monolayer hyperpermeability via the protein kinase C pathway[J]. J Surg Res, 2010, 162(1): 110-121. DOI:10.1016/j.jss.2009.01.019
[10] 费黎明, 孙耕耘. TNF-α对大鼠肺微血管内皮细胞SSeCKS表达的影响及甲强龙的干预作用[J]. 中华肺部疾病杂志(电子版), 2012, 5(2): 105-111. DOI:10.3877/cma.j.issn.1674-6902.2012.02.003
[11] Yarwood SJ, Parnell E, Bird RJ. The cyclic AMP phosphodiesterase 4D5 (PDE4D5)/receptor for activated C-kinase 1 (RACK1) signalling complex as a sensor of the extracellular nano-environment[J]. Cell Signal, 2017, 35: 282-289. DOI:10.1016/j.cellsig.2017.01.013
[12] Gu L, Huang B, Shen W, et al. Early activation of nSMase2/ceramide pathway in astrocytes is involved in ischemia-associated neuronal damage via inflammation in rat hippocampi[J]. J Neuroinflammation, 2013, 10: 109. DOI:10.1186/1742-2094-10-109
[13] Waiskopf N, Ofek K, Gilboa-Geffen A, et al. AChE and RACK1 promote the anti-inflammatory properties of fluoxetine[J]. J Mol Neurosci, 2013, 53(3): 306-315. DOI:10.1007/s12031-013-0174-6
[14] Corsini E, Galbiati V, Papale A, et al. The role of HSP27 in RACK1-mediated PKC activation in THP-1 cells[J]. Immunol Res, 2016, 64(4): 940-950. DOI:10.1007/s12026-016-8802-1
[15] 尤青海, 孙耕云, 高磊, 等. src抑制的蛋白激酶C底物调控内皮细胞分泌TNF-α[J]. 中华急诊医学杂志, 2012, 21(12): 1349-1353. DOI:10.3760/cma.j.issn.1671-0282.2012.12.012
[16] Jiang XL, Chen T, Zhang X. Activation of sonic hedgehog signaling attenuates oxidized low-density lipoprotein-stimulated brain microvascular endothelial cells dysfunction in vitro[J]. Int J Clin Exp Pathol, 2015, 8(10): 12820-12828.
[17] Hetman M, Neasta J, Fiorenza A, et al. Activation of the cAMP pathway induces rack1-dependent binding of β-actin to bdnf promoter[J]. Plos One, 2016, 11(8): e0160948. DOI:10.1371/journal.pone.0160948
[18] Bolger GB. RACK1 and beta-arrestin2 attenuate dimerization of PDE4 cAMP phosphodiesterase PDE4D5[J]. Cell Signal, 2016, 28(7): 706-712. DOI:10.1016/j.cellsig.2015.08.003
[19] Liem KF, He M, Ocbina PJR, et al. Mouse Kif7/Costal2 is a cilia-associated protein that regulates Sonic hedgehog signaling[J]. Proc Natl Acad Sci U S A, 2009, 106(32): 13377-13382. DOI:10.1073/pnas.0906944106
[20] Niewiadomski P, Zhujiang A, Youssef M, et al. Interaction of PACAP with Sonic hedgehog reveals complex regulation of the hedgehog pathway by PKA[J]. Cell Signal, 2013, 25(11): 2222-2230. DOI:10.1016/j.cellsig.2013.07.012
[21] Moore BS, Stepanchick AN, Tewson PH, et al. Cilia have high cAMP levels that are inhibited by Sonic Hedgehog-regulated calcium dynamics[J]. Proc Natl Acad Sci U S A, 2016, 113(46): 13069-13074. DOI:10.1073/pnas.1602393113