呼吸机相关性肺炎(ventilator associated pneumonia,VAP)是机械通气患者常见的院内获得性感染,其病死率高达14%~70%[1],这种高病死率多是由于多重耐药菌的产生,而错误的或不恰当的应用抗菌药物是产生耐药菌的主要原因之一[2],故早期诊断并且正确选择抗菌药物是救治VAP患者的关键。患者下呼吸道检出的病原微生物一直存在争议[3],但痰涂片革兰染色法仍然是目前临床最简单且快速的检测方法,被广泛应用。本研究选取患者临床中快速、易获得的指标,即痰涂片革兰染色及简化肺部感染评分(clinical pulmonary infection score,CPIS),评估对VAP的诊断价值,为临床诊断及初始选择抗菌药物提供一定参考。
1 资料与方法 1.1 一般资料本研究病例组入选沈阳市第四人民医院重症监护病房2014年6月至2016年6月连续收治的59例患者,所有患者均符合VAP诊断标准,以同期入住重症监护病房非肺部感染且机械通气>48 h的59例患者为对照组。
VAP诊断标准参考2013年中华医学会重症医学分会发布的VAP诊断指南[4]:机械通气>48 h,且X线胸片显示肺部出现新的或进展性浸润病灶,且除外肺不张、肺水肿、胸腔积液等, 需同时具备至少以下两项:(1) 体温>38.0 ℃或 < 36.0 ℃;(2) 外周血白细胞≥10.0×109/L或≤4.0×109/L;(3) 出现脓性气道分泌物或分泌物较前增多;(4) 下呼吸道分泌物满足其一:经气管导管内吸引分泌物定量培养分离细菌菌落计数≥105 CFU/mL;经气管镜支气管肺泡灌洗液定量培养分离细菌菌落数计数≥104 CFU/mL;经气管镜保护性毛刷定量培养分离细菌菌落数计数≥103 CFU/mL;阳性的脓液或血定量培养结果[5-6]。
排除标准:肺部恶性肿瘤、自身免疫性疾病及免疫缺陷的患者。
本研究符合医学伦理学标准,并通过沈阳市第四人民医院医学伦理委员会审批,所有研究对象均签署知情同意书。
1.2 方法 1.2.1 标本收集与检测记录患者一般资料,包括年龄、性别、急性生理学与慢性健康状况评分系统Ⅱ(APACHEⅡ评分),以及实验室、影像学和下呼吸道病原微生物学检查结果。患者诊断VAP当天及同时期留取痰标本,同时进行简化CPIS评分。
1.2.2 痰标本检测方法采用一次性无菌吸痰管从人工气道内吸痰,标本在2 h内送检,取合格痰标本(镜检:每个低倍视野下的多形核白细胞>25个及鳞状上皮细胞 < 10个为合格痰标本)进行革兰染色及培养。各标本依据《全国临床检验操作规程》(第3版)相应要求操作。
1.2.3 依据Luna等[7]简化CPIS评分标准(1) 体温(℃):0分36.5~38.4,1分38.5~38.9,2分≥39.0或≤36.0;(2) 白细胞计数(×109/L):0分4~11,1分<4或>11;(3) 气管分泌物:0分少量,1分中量,2分大量;(4) 氧合指数(mmHg,1 mmHg=0.133 kPa):0分>240或存在ARDS,2分≤240且无ARDS;(5) 胸部X线片:0分无浸润影,1分弥漫性(或斑点状)浸润,2分局限性浸润。对上述指标24 h内取最差值进行评分。总分为10分,机械通气情况下简化CPIS≥5分提示存在VAP。
1.3 判定标准设定痰涂片革兰染色阳性、简化CPIS≥5分为阳性筛选标准,进行分析。
1.4 统计学方法使用SPSS 15.0统计学软件进行数据处理,计量资料以均数±标准差(x±s)表示,组间比较采用成组t检验;计数资料采用χ2检验或Fisher精确概率法;以P<0.05为差异具有统计学意义。计算痰涂片单独和联合简化CPIS评分诊断VAP的灵敏度、特异度、阳性预测值和阴性预测值。
2 结果 2.1 患者一般情况118例患者纳入本研究,VAP组59例,非VAP组59例,两组患者在年龄、性别、急性生理学与慢性健康状况评分系统Ⅱ(APACHEⅡ)评分方面差异无统计学意义(P>0.05),见表 1。
指标 | VAP(n=59) | 非VAP组(n=59) | t/χ2值 | P值 |
年龄(岁) | 76.10±8.03 | 76.07±7.81 | 0.023 | 0.804 |
性别(男/女) | 30/29 | 32/27 | 0.135 | 0.714 |
APACHEⅡ评分 | 17.64±3.21 | 17.80±2.94 | -0.269 | 0.368 |
两组患者下呼吸道痰涂片均能检出病原菌,以G-菌多见,G+菌次之;VAP组G-菌26例(44.1%))、G+菌24例(40.6%)、未检出菌6例(10.2%)、两者均检出3例(5.1%),非VAP组G-菌23例(39.0%)、G+菌18例(30.5%)、未检出菌16例(27.1%)、两者均检出2例(3.4%)。两组患者痰涂片结果构成比比较差异无统计学意义(χ2=1.395,P=0.238),见表 2。
痰涂片 | VAP组 | 非VAP组 | ||
例数 | 构成比(%) | 例数 | 构成比(%) | |
G-菌 | 26 | 44.1 | 23 | 39.0 |
G+菌 | 24 | 40.6 | 18 | 30.5 |
未检出 | 6 | 10.2 | 16 | 27.1 |
两者均检出 | 3 | 5.1 | 2 | 3.4 |
痰涂片单独诊断VAP的特异度及阳性预测值不高,联合简化CPIS评分明显提高诊断效能。痰涂片单独及联合简化CPIS≥5分诊断VAP的灵敏度分别为89.8%、84.7%,特异度分别为27.1%、79.7%,阳性预测值分别为55.2%、80.6%,阴性预测值分别为72.7%、83.9%,见表 3。
筛查阳性标准 | 灵敏度 | 特异度 | 阳性预测值 | 阴性预测值 |
痰涂片 | 89.8 | 27.1 | 55.2 | 72.7 |
痰涂片联合CPIS≥5分 | 84.7 | 79.7 | 80.6 | 83.9 |
目前VAP诊断的金标准仍然是组织病理学炎症反应和肺活组织培养微生物阳性,但此标准临床难以实现。CPIS是一项综合了临床、影像学和微生物学等指标来评估肺部感染程度的评分系统,但气道分泌物半定量分析结果比较滞后,痰培养至少要2 d预警,而痰涂片革兰染色通常只需要十几分钟,往往能更早的提供病原学参考,为VAP患者的诊断争分夺秒。Iregui等[8]研究表明,即使在达到VAP诊断标准后仅延迟合理应用抗菌药物16 h,病死率仍增加40%。对于那些使用错误的经验性治疗的患者,即使后期根据病原学微生物资料对药物进行调整,也不能降低患者的病死率[9]。因此,VAP的早期诊断以及初始抗菌药物的选择非常重要,因其影响患者预后。
本研究患者下呼吸道分泌物涂片革兰染色结果显示,两组患者G-菌、G+菌、未检出菌及两者均检出的构成比之间差异无统计学意义,即无论患者是否发生VAP均能在患者下呼吸道内检出病原菌。这与以往研究结果相同[10-11]。气道黏膜在生理状态下存在一定数量的定植菌,通常这些微生物是无害的不会导致感染的临床症状。而在宿主免疫低下,周围环境改变(如有创操作或损伤)及滥用抗菌药物的情况下,定植菌会大量优势生长从而致病[12]。本研究发现,两组患者病原菌均以G-菌居多,其次是G+菌。痰涂片革兰染色虽不能单独作为肺部感染的诊断依据,但G-菌是下呼吸道主要的定植/致病菌,临床诊断及选择初始经验抗菌药物应该更加重视。
VAP的临床诊断需要多因素的综合判断,从而提高确诊率。CPIS是1991年由Pugin等提出的,该评分系统可用于指导临床治疗和判断预后,其优点是简易并且可连续观察,不足之处为特异性不高[13]。本研究采用联合诊断试验的串联试验,是指所做试验结果均为阳性时才能做出诊断。此试验可以大大提高诊断的特异度和阳性预测值,也降低了误诊率,其阳性结果能提高判断患病的可信度。本研究结果显示,痰涂片革兰染色联合简化CPIS诊断VAP的特异度、阳性预测值较高,表明此联合诊断不易误诊,如达到简化CPIS≥5分的标准并检出G-菌或G+菌,有80.6%的把握诊断VAP。由于VAP主要以G-菌感染为主,如检出G-菌则更有把握患此病,应及时选择合适的抗菌药物;如患者同时检出G-菌及G+菌也不能排除G+菌感染的存在。例如同时检出肺炎链球菌和鲍曼不动杆菌,通常肺炎链球菌为致病菌,而鲍曼不动杆菌为同时生长的伴随菌,耐药的鲍曼不动杆菌通常对下呼吸道不致病,耐药性越高,这种情形越明显。因此不同形态的细菌及细菌量也很重要。
综上所述,机械通气患者无论是否发生VAP,下呼吸道均能检出病原微生物,痰涂片革兰染色不能单独作为诊断依据。痰涂片革兰染色联合简化CPIS有助于VAP的诊断,并对初始选择抗菌药物提供一定参考。患者下呼吸道检出的病原菌,临床医生须综合判断,并且结合VAP的流行病学特点,以及不同地区、不同人群、不同医院就诊人群的发病情况进行诊治。本研究纳入病例相对较少,需要进一步研究探讨验证本研究结论。
[1] | Kalil AC, Metersky ML, Klompas M, et al. Executive summary: management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the infectious diseases society of America and the American Thoracic Society[J]. Clin Infect Dis, 2016, 63(5): 575-582. DOI:10.1093/cid/ciw504 |
[2] | Souza-Oliveira AC, Cunha TM, Passos LB, et al. Ventilator-associated pneumonia: the influence of bacterial resistance, prescription errors, and de-escalation of antimicrobial therapy on mortality rates[J]. Braz J Infect Dis, 2016, 20(5): 437-443. DOI:10.1016/j.bjid.2016.06.006 |
[3] | Berton DC, Kalil AC, Teixeira PJ. Quantitative versus qualitative cultures of respiratory secretions for clinical outcomes in patients with ventilator-associated pneumonia[J]. Cochrane Database Syst Rev, 2014, 10: CD006482. DOI:10.1002/14651858.CD006482.pub4 |
[4] | 蔡柏蔷, 李龙芸. 协和呼吸病学[M]. 北京: 中国协和医科大学出版社, 2013: 524-543. |
[5] | 王娟, 刘励军, 肖芃, 等. 降钙素原和肺部感染评分在肺结核并呼吸机相关性肺炎中的临床作用[J]. 中华急诊医学杂志, 2015, 24(8): 867-871. |
[6] | 李莲花, 杨倩, 栾禹博, 等. T细胞亚群与临床肺部感染评分在老年院内获得性肺炎预后评价中的作用[J]. 中华急诊医学杂志, 2014, 23(4): 377-381. |
[7] | Luna CM, Blanzaco D, Niederman MS, et al. Resolution of ventilator-associated pneumonia:prospective evaluation of the clinical pulmonary infection score as an early clinical predictor of outcome[J]. Crit Care Med, 2003, 31(3): 676-682. DOI:10.1097/01.CCM.0000055380.86458.1E |
[8] | Irequi M, Ward S, Sherman G, et al. Clinical importance of delays in the initiation of appropriate antibiotic treatment for ventilator-associated pneumonia[J]. Chest, 2002, 122(1): 262-268. DOI:10.1378/chest.122.1.262 |
[9] | Guillamet CV, Kollef MH. Update on ventilator-associated pneumonia[J]. Curr Opin Crit Care, 2015, 21(5): 430-438. DOI:10.1097/MCC.0000000000000231 |
[10] | 支琳琳, 冯伟, 刘友红. 痰涂片革兰染色在老年人呼吸机相关性下呼吸道感染中的应用价值[J]. 中华老年医学杂志, 2013, 32(10): 1066-1068. DOI:10.3760/cma.j.issn.0254-9026.2013.10.011 |
[11] | Hashimoto S, Shime N. Evaluation of semi-quantitative scoring of Gram staining or semi-quantitative culture for the diagnosis of ventilator-associated pneumonia: a retrospective comparison with quantitative culture[J]. J Intensive Care, 2013, 1(1): 2. DOI:10.1186/2052-0492-1-2 |
[12] | Barbier F, Andremont A, Wolff M, et al. Hospital-acquired pneumonia and ventilator-associated pneumonia: recent advances in epidemiology and management[J]. Curr Opin Pulm Med, 2013, 19(3): 216-228. DOI:10.1097/MCP.0b013e32835f27be |
[13] | da Silva PS, de Aguiar VE, de Carvalho WB, et al. Value of clinical pulmonary infection score in critically ill children as a surrogate for diagnosis of ventilator-associated pneumonia[J]. J Crit Care, 2014, 29(4): 545-550. DOI:10.1016/j.jcrc.2014.01.010 |