中华急诊医学杂志  2017, Vol. 26 Issue (11): 1284-1289
血栓弹力图检测儿童脓毒症凝血紊乱的临床研究
项龙, 钱娟, 张建, 任宏, 胡肖伟, 李璧如, 王莹, 傅启华, 祝益民, 宁铂涛     
200127 上海, 上海交通大学医学院附属上海儿童医学中心重症医学科(项龙、钱娟、张建、任宏、胡肖伟、李璧如、王莹、宁铂涛),检验科(傅启华);410007 长沙, 湖南省儿童医院急救中心(祝益民)
摘要: 目的 了解血栓弹力图(thromboelastography, TEG)在儿童脓毒症凝血紊乱中的检测意义。方法 前瞻性收集2016年2月至2017年1月收入上海交通大学附属上海儿童医学中心PICU诊断为脓毒症和严重脓毒症的患儿共100例,于诊断脓毒症当日检测传统凝血功能指标(conventional coagulation tests, CCTs),包括血小板计数(Plt)、活化部分凝血酶时间(APTT)、凝血酶原时间(PT)、国际标准化比值(INR)、纤维蛋白原(Fib)、D-二聚体(D-dimers);检测TEG指标,包括凝血反应时间(R)、动力时间(K)、凝固角度(α)、最大幅度(MA)、30 min幅度下降比例(LY30)、综合凝血指数(CI)。另随机纳入体检儿童25例为对照组,组间比较采用秩和检验,以P<0.05为差异有统计学意义。分析TEG和CCTs检测脓毒症凝血紊乱的特征、ROC曲线下面积法(AUC)考察TEG和CCTs预测严重脓毒症的灵敏度和特异度。结果 共纳入脓毒症56例、严重脓毒症44例,男女比例63: 37,中位年龄11.5(3.3~48) 个月,合并基础疾病占71%。根据TEG检测结果,发生凝血紊乱72例,其中高凝状态28例,低凝状态44例;根据CCTs检测结果,发生凝血紊乱50例,其中非显性DIC 29例,显性DIC 21例。高凝状态在无DIC组中比例高于非显性DIC组(46%和17.2%,P=0.016)。低凝状态显性DIC组比例高于非显性DIC组(100%和44.8%,P<0.01)。脓毒症高凝组较对照组TEG结果显示:R、K缩短,α增大,MA、CI升高(均P<0.01);CCTs结果显示:PT延长(P=0.002),APTT两组间差异无统计学意义(P=0.787)。严重脓毒症组较脓毒症组TEG呈低凝状态:R、K延长,α减小,MA、CI降低(P<0.01)。TEG与CCTs各指标预测严重脓毒症AUC均>0.5,其中α的AUC大于Fib(P=0.000 2);K的AUC大于Fib(P=0.004 1)。结论 TEG检测显示脓毒症患儿凝血紊乱占72%,其中脓毒症早期呈高凝状态;严重脓毒症呈低凝状态。TEG可为临床治疗脓毒症凝血紊乱提供重要参考信息。
关键词: 血栓弹力图     脓毒症     严重脓毒症     凝血紊乱     儿童    
Clinical study of thromboelastography for assessment of coagulation disorders in children with sepsis
Xiang Long , Qian Juan , Zhang Jian , Ren Hong , Hu Xiaowei , Li Biru , Wang Ying , Fu Qihua , Zhu Yimin , Ning Botao     
Department of Pediatrics Intensive Care Unit(Xiang L, Qian J, Zhang J, Ren H, Hu XW, Li BR, Wang Y, Ning BT), Department of Clinical Laboratory(Fu QH), Shanghai Children' s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China; Emergency Center of Hunan Provincial Children' s Hospital, Changsha 410007, China(Zhu YM)
Abstract: Objective To study the clinical significance of thromboelastography (TEG) for determining the presence of coagulation disorders in septic children. Methods A total of 100 patients suffering from sepsis or severe sepsis in pediatric intensive care unit (PICU) of Shanghai Children' s Medical Center from February 2014 to January 2015 were recruited. TEG tests and conventional coagulation laboratory tests (CCTs) including platelet count, fibrinogen, prothrombin time (PT), activated partial thromboplastin time, D-dimers, and international normalized ratio (INR) were carried out in all patients at the primary diagnosis of sepsis.Another 25 healthy children taking physical examination were enrolled as control group. Rank Sum Test was used to detect the differences in coagulation markers and TEG between the groups and there was statistical significance when P < 0.05. Receiver operating characteristic (ROC) curves were used to evaluate the roles of TEG and CCTs tests in this study. Results Of them, there were 56 patients with sepsis and 44 with severe sepsis. The male to female ratio was 63: 37, the median age was 11.5 (3.3-48) months, and 71% patients suffered from underlying disease. According to TEG, 72 patients had coagulation disorders, including 28 with hypercoagulation and 44 with hypocoagulation. CCTs tests showed 50 patients had coagulation disorders, including 29 with non-overt DIC and 21 with overt DIC. The rate of hypercoagulability was significantly higher in non-DIC group than in non-overt DIC group (46% vs. 17.2%, P=0.016). The rate of hypocoagulability was significantly higher in overt DIC group than in non-overt DIC group (100% vs. 44.8%, P < 0.01). Patients with hypercoagulation disorders had significantly shorter R(coagulation reaction time) and K(coagulation formation time) and greater α(angle α), MA(maximal amplitude) and CI(comprehensive coagulation index) compared with control group (P < 0.01). According to CCTs results, patients with hypercoagulation had significantly prolonged PT compared with control group (P=0.002). Compared with sepsis group, severe sepsis group had significantly prolonged R and K and lower α, MA and CI (P < 0.01). ROC analysis demonstrated that area under the curve (AUC) of TEG and CCTs variables for diagnosis of severe sepsis were significantly greater than 0.5. Both variables of α (P=0.000 2) and K (P=0.004 1) had significantly greater AUCs compared with Fib. Conclusions There were 72% septic patients with coagulation disorders.The hypercoagulability occurred earlier in patients with sepsis and the hypocoagulability occurred later in patients with severe sepsis.The TEG may provide important information for clinicians to deal with coagulation disorders in septic children.
Key words: Thromboelastography     Sepsis     Severe sepsis     Coagulation disorders     Pediatrics    

脓毒症是儿童常见危重症,具有较高的患病率和病死率。美国流行病学调查显示,1995—2005年儿童脓毒症患病率增加60%,每年因严重脓毒症而住院的患儿约7.5万,病死率8.9%[1]。脓毒症引起凝血紊乱占50%~70%[2],是引起死亡的主要原因之一[3]。近年来提出急性脓毒性凝血病(coagulopathy of acute sepsis,CAS)概念,指脓毒症伴有从早期凝血因子激活,微血栓形成到严重脓毒症显性弥漫性血管内凝血(disseminated intravascular coagulation,DIC)等一系列凝血紊乱性病症[4]

反映凝血紊乱的传统凝血功能检测(classical coagulation laboratory tests,CCTs)不能精确反映全血的凝血功能状况:如血小板和纤维蛋白原功能,纤溶功能等。而反映凝血紊乱及内皮细胞损伤的检测标记物如蛋白C(protein C,PC)、蛋白S(protein S,PS)、组织因子(tissue factor,TF)、抗凝血酶(antithrombin,AT)及血栓调节素(thrombomodulin,TM)等目前尚未广泛应用于临床[5]。血栓弹力图(thromboelastography,TEG)检测能反映全血促凝-抗凝平衡的状况。在20~30 min内提供包括凝血激活、纤维蛋白与血小板相互作用、血凝块强度及纤溶等情况[6]。近年来,TEG已用于成人脓毒症凝血紊乱的检测[7]。本研究旨在探讨TEG用于儿童脓毒症凝血紊乱的检测价值。

1 资料与方法 1.1 一般资料

纳入标准:① 2016年2月至2017年1月上海儿童医学中心PICU符合脓毒症、严重脓毒症诊断的患儿;② 年龄大于28 d、纠正胎龄大于41周的早产儿、小于18岁。排除标准:① 先天性凝血功能障碍;② 长期使用抗凝药物(肝素、华法林、抗凝血酶等)者。另随机纳入体检儿童25例为对照组。本研究方案获得医院伦理委员会批准(批件号SCMCIRB-K2014038)。

1.2 诊断标准

脓毒症、严重脓毒症诊断根据2012国际脓毒症管理指南[8]。脓毒症是感染导致的全身炎症反应;严重脓毒症是脓毒症诱导的组织低灌注或器官功能障碍。

DIC诊断采用2001国际血栓和止血学会ISTH评分[9],根据有无引起DIC的基础疾病(如脓毒症、创伤、肿瘤、胰腺炎、产科疾病、急性肝功能衰竭,急性中毒等)和血小板(Plt)计数、凝血酶原时间(PT)、纤维蛋白原(Fib)、D-二聚体(D-dimers)检测结果的积分。ISTH评分结果可分为显性DIC评分(overt DIC)、非显性DIC(non-overt DIC)和非DIC(not DIC)。

1.3 研究内容 1.3.1 资料收集

收集患儿临床资料,包括性别、年龄、基础疾病。于诊断脓毒症当天检测TEG(包括R、K、α、MA、LY30、CI)和CCTs(包括Plt计数、APTT、PT、INR、Fib、D-dimers)。

1.3.2 检测方法

本研究TEG检测采用美国Haemoscope公司TEG5000检测仪,配套软件、配套活化凝血检测试剂(高岭土)、样品杯(Haemoscope公司)CCTs检测采用日本Sysmex公司CA-1500全血凝分析仪。TEG主要指标包括反应时间(R)、血凝块生成时间(K)、角度α(α)、最大振幅(MA)、纤溶指数(LY30)、综合凝血指数(CI)所有检测均在留取标本后2 h内完成。

1.3.3 分组

根据2012国际脓毒症管理指南[8]将脓毒症患儿分为脓毒症组、严重脓毒症组。根据TEG5000用户手册CI参考值将患儿分为高凝组(CI>3)、低凝组(CI<-3) 和正常组(-3≤CI≤3)[10]。根据ISTH评分分为显性DIC组、非显性DIC组和无DIC组[9]。另随机纳入体检儿童25例为对照组。

1.4 统计学方法

采用SPSS 21.0统计软件,计数资料以百分比表示,采用χ2检验或Fisher精确概率法检验。非正态分布资料用中位数(四分位数)[M (Q1,Q3)]表示,组间比较采用秩和检验,以P<0.05为差异有统计学意义。采用ROC曲线下面积法(area under curve, AUC)评价TEG预测严重脓毒症的灵敏度和特异度,采用Medcala 11.4软件比较研究因素间AUC有无差异,以P<0.05为差异有统计学意义。

2 结果 2.1 基本资料

纳入脓毒症(n=56)、严重脓毒症(n=44) 患儿共100例。其中男63例(63%),女37例(37%),中位年龄11.5(3.3~48) 个月,71%存在基础疾病,见表 1

表 1 脓毒症患儿基本信息和基础疾病(n=100) Table 1 Demographics and underlying diseases of sepsis children(n=100)
指标结果
男/女(例)63/37
年龄[月,M(Q1,Q3)]11.5(3.3~48)
脓毒症/严重脓毒症(例)56/44
出院时存活/死亡(例)68/32
28 d存活/死亡(例)60/40
基础疾病(例,%)
  血液肿瘤和(或)移植后28(28)
  心血管疾病(先天性心脏病、心肌病等)12(12)
  消化系统疾病(先天性巨结肠、炎症性肠病、胰腺炎等)8(8)
  免疫缺陷5(5)
  噬血细胞增多症或巨噬细胞活化综合征5(5)
  肝移植术后5(5)
  泌尿系统疾病(尿路畸形、溶血尿毒综合征)4(4)
  中枢神经系统疾病(脑炎、脑发育不全)4(4)
2.2 TEG、CCTs检测结果

采用TEG检出凝血紊乱72例,其中高凝状态28例,低凝状态44例;采用CCTs检出凝血紊乱50例,根据ISTH评分,其中非显性DIC 29例,显性DIC 21例。高凝状态在无DIC中的比例高于非显性DIC(46%和17.2%,P=0.016);低凝状态在显性DIC中的比例高于非显性DIC(100%和44.8%,P<0.01),见表 2

表 2 TEG、CCTs检测结果(例,%) Table 2 The results of TEG and CCTs(case, %)
组别例数
(%)
高凝
(n=28)
低凝
(n=44)
正常
(n=28)
P
无DIC50(50)23(46)10(20)17(34)<0.01
非显性DIC29(29)5(17.2)13(44.8)11(37.9)
显性DIC21(21)0(0)21(100) 0(0)
  注:无DIC与非显性DIC比较,P=0.016;非显性DIC与显性DIC比较,P<0.01
2.3 TEG凝血状况与脓毒症关系 2.3.1 脓毒症、严重脓毒症组凝血状态

脓毒症组(n=56) 以高凝状态为主,严重脓毒症组(n=44) 以低凝状态为主(P<0.01),见表 3

表 3 TEG检测脓毒症、严重脓毒症组凝血状态(例,%) Table 3 TEG results in sepsis and severe sepsis groups(case, %)
组别例数
(%)
低凝
(n=44)
高凝
(n=28)
正常
(n=28)
χ2P
严重脓毒症44(44)33(75)4(9.1)7(15.9)31.30<0.01
脓毒症56(56)11(19.5)24(42.9)21(37.5)
2.3.2 脓毒症高凝组和对照组凝血指标比较

脓毒症高凝组(n=24) 与对照组(n=25) TEG结果比较显示,R、K缩短,α增大,MA、CI升高(P<0.01);CCTs结果比较显示,PT延长(P=0.00 2),APTT差异无统计学意义(P=0.787),见表 4

表 4 脓毒症高凝组、对照组凝血指标比较[M (Q1,Q3)] Table 4 TEG, CCTs results in hypecoagulation and control groups [M (Q1, Q3)]
指标脓毒症高凝组
(n=24)
对照组
(n=25)
ZP
Plt(×109/L)374(295.8,532.8)304(251.5,342.5)-2.710.007
APTT(s)39.6(33.9,47.6)38.7(35.7,42.8)-0.270.787
PT(s)14.2(13.3,15.1)13.2(12.9,13.7)-3.130.002
INR1.1(1,1.3)1(0.9,1.1)-2.890.004
Fib(g/L)3.8(2.9,5.6)2.6(2.4,2.8)-4.38<0.01
R(min)3.5(2.2,4.2)5.4(3.8,6.8)-3.61<0.01
K(min)1.0(0.8,1.1)1.7(1.3,2.3)-5.35<0.01
α(°)76.7(75,79.2)66(58.3,70.5)-5.38<0.01
MA(mm)71.5(69.4,73.1)60(58.1,62.5)-5.28<0.01
LY30(%)0(0,1.9)0(0,0)-1.030.303
CI3.8(3.4,4.8)0.7(,1.1,1.9)-5.76<0.01
2.3.3 脓毒症和严重脓毒症组凝血指标比较

严重脓毒症组较脓毒症组TEG结果呈低凝状态, 即R、K延长、α减小、MA、CI降低(P<0.01),见表 5

表 5 脓毒症、严重脓毒症组凝血指标比较[M (Q1,Q3)] Table 5 TEG, CCTs results in sepsis and severe sepsis groups[M (Q1, Q3)]
指标脓毒症组
(n=56)
严重脓毒症组
(n=44)
ZP
Plt(×109/L)281.1(152.7,431.8)73.5(22.3,187.3)-5.083<0.01
APTT(s)44.5(36.4,49.8)60.7(44.7,85.3)-4.611<0.01
PT(s)14.9(13.6,16.7)17.6(15,24.3)-4.143<0.01
INR1.2(1.1,1.4)1.5(1.2,2.3)-4.219<0.01
Fib(g/L)3.3(2.4,4.9)2.6(1.2,3.5)-2.5870.010
D-dimers(mg/L)0.7(0.3,1.8)2.2(0.6,6.8)-3.0720.002
R(min)4.5(3.4,6.4)7.8(5.1,10.5)-4.254<0.01
K(min)1.3(0.9,1.8)3.7(1.6,10)-4.503<0.01
α(°)72.3(65.3,76.4)42.9(21.2,64.5)-5.808<0.01
MA(mm)64.1(50.9,71.3)34.4(24.6,49.6)-5.456<0.01
LY30(%)0(0.0,0.0)0(0.0,0.0)-2.147<0.01
CI1.9(-1.4,3.6)-5.4(-12.9,0.5)-4.362<0.01
2.3.4 TEG预测严重脓毒症ROC曲线结果

TEG各指标预测严重脓毒症ROC曲线AUC均>0.5(见图 1表 6),其中α的AUC大于Fib(AUC为0.645,95%CI:0.544~0.758)(P=0.000 2);K的AUC大于Fib(P=0.004 1)(见图 2)。

表 6 TEG各指标预测严重脓毒症ROC曲线结果 Table 6 Results of TEG to detect severe sepsis
指标AUCS.E.95%CIZP
R0.7500.05290.647~0.8544.730<0.01
K0.7890.04960.692~0.8865.824<0.01
α0.8440.03900.767~0.9208.810<0.01
MA0.8230.04190.741~0.9057.708<0.01
CI0.7820.05410.675~0.8885.202<0.01

图 1 TEG各指标预测严重脓毒症ROC曲线 Figure 1 The ROC curve for TEG to predict severe sepsis

图 2 α、k、Fib的AUC比较 Figure 2 The comparison of AUC among α, k, Fib in severe sepsis
3 讨论

本研究TEG检出脓毒症凝血紊乱占72%,发生率与文献报道相似[2],其中高凝状态28例,低凝状态44例。CCTs检出凝血紊乱50例,其中非显性DIC 29例、显性DIC 21例。比较无DIC、非显性DIC和显性DIC组TEG结果发现,高凝状态在无DIC中的比例高于非显性DIC;低凝状态在显性DIC中的比例高于非显性DIC。结果显示随着脓毒症进展,凝血紊乱由高凝状态转变为低凝状态,这种现象与脓毒症病理生理机制有关。

脓毒症损伤的靶细胞是血管内皮细胞。当内皮细胞损伤后,在炎症因子刺激下,凝血功能激活并呈高凝状态,其主要机制有:① 激活组织因子(tissue factor,TF)介导的外源性凝血途径和通过血管性血友病因子(van Willebrand factor,vWF)诱导血小板活化[11-12];② 抑制PC、AT、组织因子途径抑制物(tissue factor pathway inhibitor,TFPI)介导的抗凝途径[13];③ 激活纤溶酶原激活物抑制物-1(plasminogen activator inhibitor-1,PAI-1) 和凝血酶激活的纤溶抑制剂(thrombin activator fibrinolysis inhibitor,TAFI)产生纤溶抑制作用[14]。随着脓毒症进展及炎症反应加剧,凝血因子大量消耗,促凝-抗凝平衡失控,凝血紊乱势必会进入低凝状态,最终演变为显性DIC,临床表现为大量微血栓形成,紫癜和不可控制的活动性出血。

本研究中TEG较CCTs多检出凝血紊乱22例(72例和50例),其中TEG正常而CCTs异常11例,死亡4例,死亡原因为原有疾病加重所致。CCTs正常而TEG异常33例(高凝23例,低凝10例),其中10例死亡(高凝4例,低凝6例)。显示TEG较CCTs能发现更多潜在的凝血紊乱。

此外,TEG较CCTs另一优点是可提供凝血紊乱高凝或低凝状态时凝血因子、纤维蛋白原与和血小板数目及功能等多种因素间相互关联的信息,其有助于临床医师为针对不同的因素给予有目的治疗提供依据。

本研究中,脓毒症高凝组较对照组TEG结果呈显著高凝,即R、K缩短、α增大、MA、CI升高,而APTT在两组间差异无统计学意义,PT在脓毒症高凝组较对照组延长,说明TEG较CCTs能早期检出脓毒症高凝状态。文献报道PT/APTT对高凝状态检测不敏感[15],在国外脓毒症研究中亦发现PT/APTT不能准确反映凝血紊乱早期高凝状态:PROWESS多中心研究显示脓毒症患者早期有63%存在APTT延长,93%患者PT延长[16]。Kiliç等[17]报道在外科ICU采用TEG检测早期脓毒症组较非脓毒症组呈高凝状态,表现为R缩短,K缩短。而CCTs显示早期脓毒症组较非脓毒症组APTT延长,PT延长。本研究结果与Kiliç等[17]文献报道相似。

TEG较CCTs检测高凝状态存在差异与两者检测的原理不同有关:① TEG和CCTs检测血凝块生成时间截点不同,当凝血因子激活后,血凝块生成为级联放大的正反馈过程,分为早期、放大期和扩散期[18]。APTT检测的时间截点是早期4%凝血酶生成[6],而R反映的是凝血酶生成后与纤维蛋白结合形成初始血凝块形成的时间。② CCTs检测为离心后血浆,忽略了Plt、PC、TF、AT、PS、TM等多种抗凝物质在凝血过程中的作用。③ PT/APTT检验是在标准37 ℃而不是患者的体温下进行,不同温度会影响凝血因子的活性,造成检测结果差异。因此,TEG能更真实及时地反映机体在疾病状态下综合的凝血功能。

Knoebl[19]根据临床表现把脓毒症凝血紊乱临床进程分为4期:① 生理性凝血系统激活期;② 非显性DIC期;③ 短暂消耗凝血病期;④ 显性DIC期。随着脓毒症进展,凝血紊乱由早期高凝状态进展为低凝状态。本研究结果显示,严重脓毒症与脓毒症组比较TEG各项指标呈低凝状态(均P<0.01),符合脓毒症凝血紊乱临床进程。Cortegiani等[20]采用TEG检测严重脓毒症组(n=31) 和无脓毒症组(n=31) 患者的凝血功能,严重脓毒症组较无脓毒症组α减小(P=0.028 8)。Sivula等[21]报道采用ROTEM检测严重脓毒症伴有DIC组(n=12) 与对照组(n=10) 的凝血功能状况,严重脓毒症伴DIC组较对照组呈低凝状态,CFT延长[184(101,285) s和88(78,102) s,P<0.01]、MCF降低[52(45,58) mm和63(58,64) mm,P<0.01]、α减小[58(46,70)°和72(70,74)°,P<0.01]。本研究结果与国内外多项研究报道相似,严重脓毒症较脓毒症凝血状况恶化。

本研究中TEG各指标预测严重脓毒症具有较大的AUC(均P<0.05)。与CCTs相关指标比较,α、K较Fib具有更大的AUC(P<0.05)。脓毒症时,Fib具有双向调节作用,一方面,脓毒症早期,Fib作为急性反应蛋白显著升高,是机体对外界病原菌侵入的保护作用[22]。另一方面,随着血凝块大量形成和凝血因子消耗,Fib沉积在血管内皮细胞,加剧局部内皮细胞的损伤及缺血缺氧,导致脓毒症恶化[23]。CCTs检测Fib采用透射比浊法,易受到抗凝血酶药物和胶体等多种因素干扰,且不能反映Fib的功能情况。α和K主要反映纤维蛋白原激活后通过血小板表面GP-Ⅱb/Ⅲa与血小板连接的速率,即血凝块形成的速率[6]。因此,α和K主要受Fib数目及功能的影响。本研究结果显示α、K较Fib预测严重脓毒症具有更大的AUC。Adamzik等[24]采用ROC法发现ROTEM纤溶指数LY60预测严重脓毒症具有较好的灵敏度和特异度(AUC=0.901,95%CI:0.838~0.964,P<0.01)。由于严重脓毒症的诊断是基于多器官功能评估的结果,采用ROC曲线评价TEG预测严重脓毒症灵敏度和特异度的报道较少,期待更多研究证实TEG评估严重脓毒症的优势。

本研究局限性:(1) 单中心研究,数据代表性具有一定缺陷;(2) 基础疾病占比例较高,对于研究脓毒症凝血紊乱具有混杂因素;(3) 未涉及TEG结果指导脓毒症凝血紊乱治疗。

参考文献
[1] Hartman ME, Linde-Zwirble WT, Angus DC, et al. Trends in the epidemiology of pediatric severe sepsis[J]. Pediatr Crit Care Med, 2013, 14(7): 686-693. DOI:10.1097/PCC.0b013e3182917fad
[2] Levi M, de Jonge E, van der Poll T. Sepsis and disseminated intravascular coagulation[J]. J Thromb Thrombolysis, 2003, 16(1/2): 43-47. DOI:10.1023/B:THRO.0000014592.27892.11
[3] Walsh TS, Stanworth SJ, Prescott RJ, et al. Prevalence, management, and outcomes of critically ill patients with prothrombin time prolongation in United Kingdom intensive care units[J]. Crit Care Med, 2010, 38(10): 1939-1946. DOI:10.1097/CCM.0b013e3181eb9d2b
[4] Simmons J, Pittet JF. The coagulopathy of acute sepsis[J]. Curr Opin Anaesthesiol, 2015, 28(2): 227-236. DOI:10.1097/ACO.0000000000000163
[5] Hoffman M, Monroe DM 3rd. A cell-based model of hemostasis[J]. Thromb Haemost, 2001, 85(6): 958-965.
[6] Gonzalez E, Moore HB, Chapman MP, et al. Trauma-induced coagulopathy:an institution's 35 year perspective on practice and research[J]. Scand J Surg, 2014, 103(2): 89-103. DOI:10.1177/1457496914531927
[7] Müller MC, Meijers JC, Vroom MB, et al. Utility of thromboelastography and/or thromboelastometry in adults with sepsis:a systematic review[J]. Cirt Care, 2014, 18(1): R30. DOI:10.1186/cc13721
[8] Dellinger RP, Levy MM, Rhodes A, et al. Surviving sepsis campaign:international guidelines for management of severe sepsis and septic shock, 2012[J]. Intensive Care Med, 2013, 39(2): 165-228. DOI:10.1007/s00134-012-2769-8
[9] Taylor FB Jr, Toh CH, Hoots WK, et al. Towards definition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation[J]. Thromb Haemost, 2001, 86(5): 1327-1230.
[10] Chan KL, Summerhayes RG, Ignjatovic V, et al. Reference values for Kaolin-activated thromboelastography in healthy children[J]. Anesth Analg, 2007, 105(6): 1610-1613. DOI:10.1213/01.ane.0000287645.26763.be
[11] Chu AJ. Tissue factor, blood coagulation, and beyond:an overview[J]. Int J Inflam, 2011, 2011: 367284.
[12] Pawlinski R, Mackman N. Cellular sources of tissue factor in endotoxemia and sepsis[J]. Thromb Res, 2010, 125(suppl): S70-73. DOI:10.1016/j.thromres.2010.01.042
[13] Tang H, Ivanciu L, Popescu N, et al. Sepsis-induced coagulation in the baboon lung is associated with decreased tissue factor pathway inhibitor[J]. Am J Pathol, 2007, 171(3): 1066-1077. DOI:10.2353/ajpath.2007.070104
[14] Emonts M, de Bruijne EL, Guimarães AH, et al. Thrombin-activatable fibrinolysis inhibitor is associated with severity and outcome of severe meningococcal infection in children[J]. J Thromb Haemost, 2008, 6(2): 268-276. DOI:10.1111/j.1538-7836.2007.02841.x
[15] Lipets EN, Ataullakhanov FI. Global assays of hemostasis in the diagnostics of hypercoagulation and evaluation of thrombosis risk[J]. Thromb J, 2015, 13(1): 4. DOI:10.1186/s12959-015-0038-0
[16] Laterre PF, Levy H, Clermont G, et al. Hospital mortality and resource use in subgroups of the recombinant human activated protein C worldwide evaluation in severe sepsis(PROWESS) trail[J]. Crit Care Med, 2004, 32(11): 2207-2218. DOI:10.1097/01.CCM.0000145231.71605.D8
[17] Kiliç Y, Topçu I, Bambal H, et al. Thromboelastography in the evaluation of coagulation disorders in patinets with sepsis[J]. Turk J Med Sci, 2014, 44(2): 267-272.
[18] Mann KG, Butenas S, Brummel K, et al. The dynamics of thrombin formation[J]. Arterioscler Thromb Vasc Biol, 2003, 23(1): 17-25. DOI:10.1161/01.ATV.0000046238.23903.FC
[19] Konebl P. Blood coagulation disorders in septic patients[J]. Wiene Med Wochenschr, 2010, 160(5/6): 129-138. DOI:10.1007/s10354-009-0738-9
[20] Cortegiani A, Marinol L, Motalto F, et al. Use of thromboelastography in severe sepsis:a case-control study[J]. Crit Care, 2011, 5: 444.
[21] Sivula M, Pettilä V, Niemi TT, et al. Thromboelastometry in patients with severe sepsis and disseminated intravascular coagulation[J]. Blood Coagul Fibrinolysis, 2009, 20(6): 419-426. DOI:10.1097/MBC.0b013e32832a76e1
[22] Collins PW, Macchiavello LI, Lewis SJ, et al. Global tests of haemostasis in critically ill patients with severe sepsis syndrome comparison to controls[J]. Br J Haematol, 2006, 135(2): 220-227. DOI:10.1111/j.1365-2141.2006.06281.x
[23] Bakhtiari K, Meijers JC, de Jonge E, et al. Prospective validation of the International Society of Thrombosis and Haemostasis scoring system for disseminated intravascular coagulation[J]. Crit Care Med, 2004, 32(12): 2416-2421. DOI:10.1097/01.CCM.0000147769.07699.E3
[24] Adamzik M, Eggmann M, Frey UH, et al. Comparison of thromboelastometry with procalcitonin, interleukin 6, and C-reactive protein as diagnostic tests for severe sepsis in critically ill adults[J]. Crit Care, 2010, 14(5): R178. DOI:10.1186/cc9284