中华急诊医学杂志  2016, Vol. 25 Issue (4): 444-449
高渗盐水对脑缺血大鼠Notch信号通路的影响
韩永丽, 朱高峰, 黄林强, 邓医宇, 王桥生, 江稳强, 温妙云, 陈胜龙, 胡北, 曾红科     
510055 广州,南方医科大学研究生学院(韩永丽、王桥生、曾红科);
510080 广州,广东省人民医院 广东省医学科学院急危重症医学部(韩永丽、朱高峰、黄林强、邓医宇、王桥生、江稳强、温妙云、陈胜龙、胡北、曾红科)
摘要目的 探讨高渗盐水(hypertonic saline, HS)对大鼠脑缺血后小胶质细胞Notch信号通路的影响。 方法 SPF级-雄性SD大鼠随机(随机数字法)分为假手术组,脑缺血组,生理盐水(NS)组,10%高渗盐水(10%HS)组。除假手术组外,其他各组采用线栓法复制右侧大脑中动脉栓塞脑缺血模型,缺血2 h后实施再灌注24 h,NS组和10%HS组按0.3 mL/h经尾静脉分别匀速泵入NS和10%HS治疗24 h。然后采用免疫荧光法、RT-PCR、Western blot检测各组大鼠脑缺血灶周围Notch1及Notch受体的胞内片段NICD的表达。数据采用单因素方差分析,用LSD法进行组间两两比较,以P<0.05为差异具有统计学意义。 结果 免疫荧光表明与假手术组比较,脑缺组和NS组缺血灶周围小胶质细胞Notch1与NICD的表达明显增加;10%HS组与脑缺血组及NS组比较,缺血灶周围小胶质细胞Notch1与NICD的表达明显减少。RT-PCR表明脑缺血组及NS组与对照组比较,Notch1 mRNA的表达明显增加(对照组:1.000±0.076;脑缺血组:2.203±0.283;NS组:1.616±0.185;P<0.01);10%HS组与脑缺血组及NS组比较,Notch1 mRNA的表达均明显减少(脑缺血组:2.203±0.283;NS组:1.616±0.185;HS组:1.202±0.177;P<0.05)。Western blot表明脑缺血组和NS组与对照组相比,脑缺血灶周围Notch1蛋白表达明显增加(对照组:0.290±0.079;脑缺血组:0.750±0.029;NS组:0.765±0.182;P<0.01);10%HS治疗后,Notch1蛋白表达较脑缺血组和NS组明显减少(脑缺血组:0.750±0.029;NS组:0.765±0.182;HS组:0.390±0.195;P<0.05)。脑缺血组和NS组与对照组比较,大鼠脑缺血灶周围NICD蛋白表达明显增加(对照组:0.401±0.196;脑缺血组:0.906±0.359;NS组:0.847±0.153;P<0.01);10%HS治疗后,NICD蛋白表达较脑缺血组和NS组明显减少(脑缺血组:0.906±0.359;NS组:0.847±0.153;HS组:0.561±0.165;P<0.05)。 结论 HS可抑制大鼠脑缺血后小胶质细胞上Notch信号通路的激活。
关键词高渗盐水     生理盐水     脑缺血     大脑中动脉栓塞    小胶质细胞    Notch信号通路    Notch1    NICD    
The effect of hypertonic saline on notch signaling pathway in experimentally induced cerebral ischemic rats
Han Yongli, Zhu Gaofeng, Huang Linqiang, Deng Yiyu, Wang Qiaosheng, Jiang Wenqiang, Wen Miaoyun, Chen Shenglong, Hu Bei, Zeng Hongke     
Southern Medical University, Guangzhou, 510055, China(Han YL, Wang QS,Zeng HK);
The Departmeny of Emergency & Crital Care Medince; Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China(Han YL, Zhu GF, Huang LQ, Deng YY, Wang QS, Jiang WQ, Wen MY, Chen SL, Hu B, Zeng HK)
Fund Program: National Key Clinical Speciality Construction Project (2012-649); Guangzhou Critical Clinical Medical Research and Transformation Centre Project (155700027); National Natural Science Foundation of China(81272150); Guangdong Science and Technology Plan Projects (2012 b031800308)
Corresponding author: Zeng Hongke, Email: zenghongke@vip.163.com
Abstract: Objective To explore whether hypertonic saline would partake in regulating Notch signaling in microglia in experimentally induced cerebral ischemic rats. Methods Male SD rats were randomly divided into sham group, cerebral ischemia group, normal saline group (NS group), 10% hypertonic saline group (10%HS group), the model of cerebral ischemia were established in all rats except the sham group by using middle cerebral artery occlusion (MCAO). After 2 hours of MCAO, the rats were through reperfusion for 24 h. In addition, rats in the normal saline group and 10% HS group were respectively treated with a continuous intravenous injection of normal saline (0.3 mL/h) and 10% HS (0.3 mL/h) by tail vein for 24 h. Immunofluorescence methods, RT-PCR and Western blot were used to detect the expression of Notch1 and intracellular Notch receptor domain (NICD). All data was analyzed by one-way analysis of variance (ANOVA), The intergroup comparisons were analyzed by the least-significant-difference (LSD) tests. Differences were considered statistically significant if P<0.05. Results Immunofluorescence showed that the expression of Notch1 and NICD were significantly increased in the microglia around peri-ischemia area in cerebral ischemia group and normal saline group compared to sham group; the expression of Notch1 and NICD in the microglia around peri-ischemia area were significantly reduced in 10% HS group compared to ischemia group and NS group. RT-PCR showed that the mRNA expression of Notch1 was significantly increased in ischemia group and NS group compared to sham group ( sham group: 1.000±0.076; ischemia group: 2.203±0.283; NS group: 1.616±0.185; P<0.01); however, it was significantly reduced in 10% HS group compared to ischemia group and NS group ( ischemia group: 2.203±0.283; NS group: 1.616±0.185; 10%HS group: 1.202±0.177; P<0.05). Western blot showed that the protein expression of Notch1 was significantly increased in ischemia group and NS group compared to sham group ( sham group: 0.290±0.079; ischemia group: 0.750±0.029; NS group: 0.765±0.182; P<0.01); but was significantly reduced in 10% HS group compared to ischemia group and NS group (ischemia group: 0.750±0.029; NS group: 0.765±0.182; 10%HS group: 0.390±0.195; P<0.05). The protein expression of NICD was significantly increased in ischemia group and NS group compared to sham group ( sham group: 0.401±0.196; ischemia group: 0.906±0.359; NS group: 0.847±0.153; P<0.01); but was significantly reduced in 10% HS group compared to ischemia group and NS group ( ischemia group: 0.906±0.359; NS group: 0.847±0.153; 10%HS group: 0.561±0.165; P<0.05). Conclusions Our results suggest that HS markedly suppresses Notch signaling in microglia around the ischemia tissue area in experimental induced cerebral ischemic rats.
Key words: Hypertonic saline     Normal saline     Cerebral ischemia     Middle cerebral artery occlusion (MCAO)     Microglia     Notch signaling     Notch1     Notch receptor domain (NICD)    

缺血性脑卒中是临床上常见神经系统疾病,而恶性缺血性脑卒中患者神经功能恶化和病死率可高达40%~80%[1],脑缺血灶周围大量的炎症介质可加重脑组织损害[2]。近年来研究发现Notch信号通路与缺血脑损伤时神经炎症介质的释放密切相关[3],而小胶质细胞是神经炎症介质的主要来源[4, 5, 6]。研究表明高渗盐水可抑制脑缺血后小胶质细胞释放炎症介质IL-1β、TNF-α、MCP-1,但其具体分子机制尚不清楚[7, 8]。而高渗盐水抑制小胶质细胞炎症介质释放是否与Notch信号通路相关,目前还没有相关研究报道。本研究通过线栓法制作大脑中动脉局灶脑缺血再灌注模型,探索高渗盐水对脑缺血后小胶质细胞Notch信号通路的影响,更为深入探讨高渗盐水降低脑梗死,减轻神经炎症的分子基础,为高渗盐水治疗脑梗死提供理论支持。

1 材料与方法 1.1 试剂和仪器

免疫荧光显微镜(Olympus DP73 Microscope,Olympus,日本);蛋白成像仪(ImageQuant LAS 500,瑞典);定量PCR仪(MJ option 2,美国);逆转录试剂盒(TAKARA,大连,中国,货号:DRR036S);PCR定量试剂盒 (TAKARA,中国,货号:DRR820A);一抗:Notch1 (Cell Signaling Technology,美国,货号:4380);NICD(Cell Signaling Technology,美国,货号:4147);β-actin(Cell Signaling Technology,美国,货号:3700);Lectin(Sigma,美国,货号:L0401);二抗:羊抗兔-HRP(Cell Signaling Technology,美国,货号:7074);羊抗小鼠- HRP(Cell Signaling Technology,美国,货号:7076);羊抗兔荧光二抗(A-21428,Life Technologies,美国)。

1.2 动物与分组

72只220~250 g成年健康SD大鼠,随机(随机数字法)分为假手术组、脑缺血组、生理盐水组(简称NS组)、10%高渗盐水治疗组(简称10%HS组)。除假手术组大鼠外,其他各组大鼠采用线栓法复制右侧大脑中动脉局灶脑缺血模型,缺血2 h后实施再灌注,以再灌注的时间点作为治疗起点,NS组和10%HS组按0.3 mL/h分别经尾静脉匀速泵入NS和10%HS。治疗24 h后提取缺血侧脑组织,用Western Blot的方法检测缺血灶周围Notch1、NICD的蛋白表达(每组n=6),用RT-PCR方法检测缺血灶周围Notch1 mRNA的表达(每组n=6),用免疫双标法检测缺血灶周围Notch1、NICD与小胶质细胞(Lectin标记)的共定位表达(每组n=6)。

1.3 大鼠大脑中动脉局灶脑缺血再灌注模型制作

所有大鼠随机分组,术前12 h禁食但不禁水。脑缺血模型根据文献[9]再加以改进,大鼠经10%水合氯醛(0.3 mL/100 g)麻醉后,颈部正中切口,分离颈总动脉、颈内动脉、颈外动脉;在颈总动脉近心端结扎血管,在颈动脉分叉处结扎颈外动脉,夹闭颈内动脉;在颈总动脉远心端作一小切口,随后将线栓沿该切口顺颈内动脉方向插入,当线栓顶端距颈动脉分叉处约18~20 mm并有中度阻力感时停止插入,此时代表线栓已阻断大脑中动脉的血液供应。2 h后,再将线栓拔出约1 cm以进行再灌注,同时以Longa五分法进行神经行为学评分,1~3分作为有效模型。假手术组只分离颈部血管,不做结扎,也不插入线栓。

1.4 脑缺血灶周围Notch1 mRNA的表达

治疗24 h后,迅速取大鼠缺血灶周围脑组织,用Trizol提取总RNA并按照逆转录试剂盒说明书将提取的RNA逆转录成cDNA;按照10 μL Real Time PCR反应体系进行扩增,Notch1扩增引物:F: ATGACTGCCCAGGAAACAAC,R:GTCCAGCCATTG-ACACACAC。扩增步骤按照两步法:94 ℃ 30s预变性,循环1次;95 ℃ 5 s变性,60 ℃ 30 s延伸,循环35次;72 ℃ 2 min绘制融解曲线。反应结束后按照Delta-delta Ct[10]法计算各组Notch1 mRNA的表达。

1.5 缺血灶周围Notch1、NICD的蛋白表达

治疗24 h后,迅速取各组大鼠缺血侧脑组织,用总蛋白提取试剂盒提取缺血灶周围蛋白,并用BCA法测定蛋白浓度。蛋白定量配平后使用8% SDS-PAGE凝胶进行电泳,再电转至PVDF膜。转膜成功后用5%的脱脂奶粉室温封闭2 h,随后孵育一抗Notch1(1: 500)、NICD(1: 200)、β-actin(1: 1 000)于4 ℃冰箱过夜。次日取出,用TBST漂洗后再4 ℃孵育二抗2 h。最后使用蛋白成像仪检测目的蛋白条带,及使用Fluorchem 8900灰度分析软件进行分析。

1.6 免疫双荧光法检测

大鼠治疗24 h后,10%水合氯醛深度麻醉,经心脏灌注生理盐水及4%多聚甲醛,取出缺血侧脑组织并浸泡于4%多聚甲醛过夜,再用蔗糖溶液脱水,OCT包埋,作冠状位冰冻切片(10 μm)。实验前先用PBS漂洗,再5%BSA封闭30 min,随后孵育一抗Notch1(1: 100)、NICD(1: 100)于4 ℃冰箱过夜,次日孵育荧光二抗和Lectin(1: 100)2 h,使用抗荧光淬灭剂封片后,随机取5个视野于免疫荧光显微镜下阅片。

1.7 统计学方法

所有数据使用统计学软件SPSS 13.0进行分析,计量资料用均数±标准差(x±s)表示,RT-PCR及Western blot数据多组间较分析时采用one-way ANOVA方差分析,两两比较采用LSD-t检验方法分析,以P<0.05为差异具有统计学意义。

2 结果 2.1 脑缺血灶周围Notch1、NICD与小胶质细胞(Lectin)共定位表达

图 12可见,假手术组小胶质细胞呈分枝状,Notch1及NICD几乎不表达于小胶质细胞;缺血损伤后,小胶质细胞呈圆形或阿米巴形,脑缺血组与NS组Notch1及NICD在小胶质细胞上的表达明显增加;10%HS治疗后,Notch1及NICD在小胶质细胞上的表达明显减少。

A、D、G、J代表相应各组Lectin标记的小胶质细胞的表达情况,B、E、H、K分别表示假手术组、脑缺血组、生理盐水组、高渗盐水组Notch1的表达情况,C、F、I、L表示各组Lectin和Notch1的共定位表达情况。水平标尺:20 μm 图 1 免疫荧光显示各组Lectin和Notch1的共定位表达 Co-localization of Lectin and Notch1 in each group by immunofluorescence Fig 1
A、D、G、J代表相应各组Lectin标记的小胶质细胞的表达情况,B、E、H、K分别表示假手术组、脑缺血组、生理盐水组、高渗盐水组NICD的表达情况,C、F、I、L表示各组Lectin和NICD的共定位表达情况。水平标尺A-L,20 μm 图 2 免疫荧光图像显示各组Lectin和NICD的共定位表达 Fig 2 Co-localization of Lectin and NICD in each group by immunofluorescence
与假手术组比较,aP<0.01;与脑缺血组比较,bP<0.01;与生理盐水组比较,cP<0.05 图 3 各组Notch1 mRNA的表达水平 Fig 3 Comparison of Notch1 mRNA expression between groups
与假手术比较,aP<0.01,与脑缺血组比较,bP<0.05 图 4 Western blot检测各组Notch1与NICD蛋白表达 Fig 4 Levels of Notch1 protein and NICD protein measured by Western blot
2.2 脑缺血灶周围Notch1 mRNA的表达

各组脑缺血灶周围Notch1 mRNA的相对表达分别为:对照组1.000±0.076;脑缺血组2.203±0.283;NS组1.616±0.185;HS组1.202±0.177;与假手术组比较,脑缺血组与NS组Notch1 mRNA的表达明显增加(P<0.01);此外,与脑缺血组比较,NS组Notch1 mRNA的表达均明显减少(P<0.01);与脑缺血组及NS组比较,10%HS组Notch1 mRNA的表达均明显减少(P<0.05)。

2.3 脑缺血灶周围Notch1、NICD的蛋白表达

各组脑缺血灶周围Notch1蛋白相对表达为:对照组0.290±0.079;脑缺血组0.750±0.029;NS组0.765±0.182;HS组0.390±0.195。脑缺血组和NS组大鼠脑缺血灶周围Notch1蛋白表达比对照组明显增加(P<0.01);10%HS治疗后,Notch1蛋白表达较脑缺血组和NS组明显减少(P<0.05)。各组脑缺血灶周围NICD蛋白相对表达为:0.401±0.196;脑缺血组:0.906±0.359;NS组:0.847±0.153;HS组:0.561±0.165。脑缺血组和NS组大鼠脑缺血灶周围NICD蛋白表达比对照组明显增加(P<0.01);10%HS治疗后,NICD蛋白表达较脑缺血组和NS组明显减少(P<0.05)。

3 讨论

小胶质细胞被认为是中枢神经系统内主要的免疫细胞,脑缺血灶周围有大量激活的小胶质细胞参与神经炎症反应;在生理情况下,小胶质细胞呈分枝状,当受到急、慢性刺激后,小胶质细胞被激活,变成圆形或阿米巴形,并释放产生大量IL-1β、TNF-α、ROS、IL-6、iNOS等炎症介质等加重脑组织损害[4, 5, 6]。在本研究中,正常对照组小胶质细胞呈分枝状,而脑缺血后,小胶质细胞呈圆形或阿米巴形;提示脑缺血可激活小胶质细胞。

Notch信号通路在免疫细胞应答外界刺激和感染中具有重要作用[11, 12, 13]。它是一条广泛存在于动物体内,高度保守的信号通路[14]。当Notch受体与配体结合时,Notch信号通路被激活,随后Notch受体经过两次蛋白酶水解作用释放出Notch蛋白的胞内片段——NICD,NICD再入核调控下游目的蛋白的表达[15, 16]。因此,NICD也可以作为Notch信号通路激活的标志[17]。小胶质细胞作为中枢神经系统中主要的免疫细胞,其Notch信号通路在中枢神经系统免疫应答中扮演重要角色。本研究结果显示未激活的小胶质细胞几乎不表达Notch1与NICD;当脑缺血后,小胶质细胞被激活,小胶质细胞上表达的Notch1与NICD也明显增加,表明Notch信号通路与小胶质细胞激活密切相关,这与Grandbarbe等[18]用LPS诱导小胶质细胞激活后,细胞表面Notch1表达明显上调的研究结果一致。此外也有研究表明阻断Notch信号通路可减少激活的小胶质细胞数量[3]

当中枢神经系统损伤时,Notch信号通路可被激活[19]并加重脑缺血后损伤[20]。本研究通过RT-PCR及Western Blot实验方法同样表明,脑缺血后脑缺血组和生理盐水组缺血灶周围Notch1 mRNA表达明显增加,Notch1及NICD的蛋白表达也明显增加;表明脑缺血后Notch信号通路被激活。有研究表明脑缺血后Notch1、NICD表达明显上调,阻断Notch信号通路可明显减少神经元凋亡、减少激活的小胶质细胞数量,减少炎症介质IL-6、IL-1β、iNOS、M-CSF的释放以及降低脑梗死面积,提高神经行为功能[3, 20, 21]

长期以来渗透性治疗都是颅内压增高的主要治疗方法[22];高渗盐水是指南推荐治疗脑水肿的渗透性药物[1],广泛应用于脑水肿颅内高压的患者[23]。有研究表明高渗盐水具有神经保护作用并能降低脑梗死患者的病死[24, 25]。本课题组前期研究[7, 8]表明高渗盐水可降低脑缺血大鼠的脑梗死面积,减少小胶质细胞释放炎症介质IL-1β、TNF-α、MCP-1。故本研究进一步探索高渗盐水是否通过Notch信号通路来发挥抑制炎症介质的作用,结果显示脑缺血大鼠经高渗盐水治疗后Notch1 mRNA表达下降,脑缺血周围Notch1及NICD蛋白表达下降,脑缺血灶周围小胶质细胞上Notch1及NICD表达明显下降,表明高渗盐水可抑制脑缺血后小胶质细胞上Notch信号通路的激活。这可能是高渗盐水减轻脑损伤的机制之一。

但高渗盐水调控Notch信号通路的具体机制还不是很清楚。研究表明高渗盐水能够调节免疫细胞,抑制巨噬细胞的活化及中性粒细胞的迁移,减炎症因子的释放[26, 27, 28]。NF-κB是调控炎症因子的经典信号通路,有研究发现[29]高渗盐水可抑制I-κBα的磷酸化,抑制NF-κB的核转移及其调控作用。而NF-κB可以调控Notch信号通路,阻断NF-κB可明显减少Notch1、NICD的表达[30]。提示高渗盐水对Notch信号通路的抑制作用可能是通过NF-κB发挥作用。

参考文献
[1] Wijdicks EF, Sheth KN, Carter BS, et al. Recommendations for the management of cerebral and cerebellar infarction with swelling:astatement for healthcare professionals from the American Heart Association/American Stroke Association[J]. Stroke, 2014, 45(4):1222-1238.DOI: 10.1161/01.str.0000441965.15164.d6.
[2] Amantea D, Nappi G, Bernardi G, et al. Post-ischemic brain damage: pathophysiology and role of inflammatory mediators[J]. FEBS J, 2009, 276(1):13-26.DOI: 10.1111/j.1742-4658.2008.06766.x.
[3] Wei Z, Chigurupati S, Arumugam TV, et al. Notch activation enhances the microglia-mediated inflammatory response associated with focal cerebral ischemia[J]. Stroke, 2011, 42(9):2589-2594.DOI: 10.1161/STROKEAHA.111.614834.
[4] Kaur C, Dheen ST, Ling EA. From blood to brain: amoeboid microglial cell, anascent macrophage and its functions in developing brain[J]. Acta Pharmacol Sin, 2007, 28(8):1087-1096.DOI: 10.1111/j.1745-7254.2007.00625.x.
[5] Benakis C, Garcia-Bonilla L, Iadecola C, et al. The role of microglia and myeloid immune cells in acute cerebral ischemia[J]. Front Cell Neurosci, 2014, 8:461.DOI: 10.3389/fncel.2014.00461.
[6] Chew LJ, Takanohashi A, Bell M. Microglia and inflammation: impact on developmental brain injuries[J]. Ment Retard Dev Disabil Res Rev, 2006, 12(2):105-112.DOI: 10.1002/mrdd.20102.
[7] Huang LQ, Zhu GF, Deng YY, et al. Hypertonic saline alleviates cerebral edema by inhibiting microglia-derived TNF-alpha and IL-1beta-induced Na-K-Cl Cotransporter up-regulation[J]. J Neuroinflammation, 2014, 11:102.DOI: 10.1186/1742-2094-11-102.
[8] 黄林强,邓医宇,曹卫,等. 高渗盐水影响小胶质细胞释放单核细胞趋化蛋白1的研究[J]. 中华急诊医学杂志, 2014, 23(4):384-388.DOI:10.3760/cma.j.issn.1671-0282.2014.04.008. Huang LQ,De YY,Cao W,et al. Hypertonic saline decreases monocyte chemotactic protein 1 expression in microglia may be through inhibition of p38 MAPK signaling pathway[J]. Chin J Emerg Med, 2014, 23(4):384-388.
[9] Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke, 1989, 20(1):84-91.DOI: 10.1161/01.STR.20.1.84.
[10] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods, 2001, 25(4):402-408.DOI:10.1006/meth.2001.1262.
[11] Eagar TN, Tang Q, Wolfe M, et al. Notch 1 signaling regulates peripheralTcell activation[J]. Immunity, 2004, 20(4):407-415.DOI:10.1016/S1074-7613(04)00081-0.
[12] Palaga T, Miele L, Golde TE, et al. TCR-mediated Notch signaling regulates proliferation and IFN-gamma production in peripheralTcells[J]. J Immunol, 2003, 171(6):3019-3024.DOI:10.4049/jimmunol.171.6.3019.
[13] Monsalve E, Perez MA, Rubio A, et al. Notch1 up-regulation and signaling following macrophage activation modulates gene expression patterns known to affect antigen-presenting capacity and cytotoxic activity[J]. J Immunol, 2006, 176(9):5362-5373.DOI:10.4049/jimmunol.176.9.5362.
[14] Bray SJ. Notch signalling:asimple pathway becomes complex[J]. Nat Rev Mol Cell Biol, 2006, 7(9):678-689.DOI:10.1038/nrm2009.
[15] Fiuza UM, Arias AM. Cell and molecular biology of Notch[J]. J Endocrinol, 2007, 194(3):459-474.DOI: 10.1677/JOE-07-0242.
[16] Zhou ZD, Kumari U, Xiao ZC, et al. Notch asamolecular switch in neural stem cells[J]. IUBMB Life, 2010, 62(8):618-623.DOI: 10.1002/iub.362.
[17] Yoon K, Gaiano N. Notch signaling in the mammalian central nervous system: insights from mouse mutants[J]. Nat Neurosci, 2005, 8(6):709-715.DOI:10.1038/nn1475.
[18] Grandbarbe L, Michelucci A, Heurtaux T, et al. Notch signaling modulates the activation of microglial cells[J]. Glia, 2007, 55(15):1519-1530.DOI: 10.1002/glia.20553.
[19] Chen J, Leong SY, Schachner M. Differential expression of cell fate determinants in neurons and glial cells of adult mouse spinal cord after compression injury[J]. Eur J Neurosci, 2005, 22(8):1895-1906.DOI:10.1111/j.1460-9568.2005.04348.x.
[20] Arumugam TV, Chan SL, Jo DG, et al. Gamma secretase-mediated Notch signaling worsens brain damage and functional outcome in ischemic stroke[J]. Nat Med, 2006, 12(6):621-623.DOI:10.1038/nm1403.
[21] Yao L, Kan EM, Kaur C, et al. Notch1 signaling regulates microglia activation via NF-kappaB pathway after hypoxic exposure in vivo and in vitro[J]. PLoS One, 2013, 8(11):e78439.DOI: 10.1371/journal.pone.0078439.
[22] Diringer MN, Zazulia AR. Osmotic therapy: fact and fiction[J]. Neurocrit Care, 2004, 1(2):219-233.DOI:10.1385/ncc:1:2:219.
[23] 陈胜龙,曾红科. 高渗盐水在脑水肿颅高压患者中的临床应用[J]. 中华急诊医学杂志, 2014, 23(12):1305-1306.DOI: 10.3760/cma.j.issn.1671-0282.2014.12.001. Chen SL, Zeng HK, The clinical application of Hypertonic saline in patients with brain edema and cranial pressure[J]. Chin J Emerg Med, 2014, 23(12):1305-1306.
[24] Al-Rawi PG, Tseng MY, Richards HK, et al. Hypertonic saline in patients with poor-grade subarachnoid hemorrhage improves cerebral blood flow, brain tissue oxygen, and pH[J]. Stroke, 2010, 41(1):122-128.DOI: 10.1161/STROKEAHA.109.560698.
[25] Noppens RR, Christ M, Brambrink AM, et al. An early bolus of hypertonic saline hydroxyethyl starch improves long-term outcome after global cerebral ischemia[J]. Crit Care Med, 2006, 34(8):2194-2200.DOI: 10.1097/01.CCM.0000228915.94169.B1.
[26] 李丹枫,万曦,魏捷,等. 高渗盐水对创伤性休克患者单核细胞表面分子14/16表达及血浆抗炎因子的影响[J]. 中华急诊医学杂志, 2008, 17(9):961-964.DOI: 10.3760/j.issn. 1671-0282.2008.09.016. Li DF, Wang X, Wei J,et al. Effect of hypertonic saline on CD14/CD16 expression by monocytes and the levels of anti-inflammatory cytokines in patients sustaining traumatic hemorrhagic shock[J]. Chin J Emerg Med, 2008, 17(9):961-964.
[27] Powers KA, Zurawska J, Szaszi K, et al. Hypertonic resuscitation of hemorrhagic shock prevents alveolar macrophage activation by preventing systemic oxidative stress due to gut ischemia/reperfusion[J]. Surgery, 2005, 137(1):66-74.DOI:10.1016/j.surg.2004.05.051.
[28] Theobaldo MC, Barbeiro HV, Barbeiro DF, et al. Hypertonic saline solution reduces the inflammatory response in endotoxemic rats[J]. Clinics (Sao Paulo), 2012, 67(12):1463-1468.DOI:10.6061/clinics/2012(12)18.
[29] Wright FL, Gamboni F, Moore EE, et al. Hyperosmolarity invokes distinct anti-inflammatory mechanisms in pulmonary epithelial cells: evidence from signaling and transcription layers[J]. PLoS One, 2014, 9(12):e114129. DOI: 10.1371/journal.pone.0114129.
[30] Cao Q, Kaur C, Wu CY, et al. Nuclear factor-kappa beta regulates Notch signaling in production of proinflammatory cytokines and nitric oxide in murine BV-2 microglial cells[J]. Neuroscience, 2011, 192:140-154.DOI: 10.1016/j.neuroscience.2011.06.060.