2. 南京大学医学院附属鼓楼医院急诊科,南京 210003
脓毒症(sepsis)被定义为宿主对感染反应失调引起的危及生命的器官功能障碍,是重大的全球公共卫生问题[1]。最新统计显示我国每年有480~610万脓毒症住院患者,且脓毒症相关性死亡占院内死亡的比例高达30%[2]。遗憾的是由于脓毒症发病机制复杂,目前临床治疗仍局限于抗感染、维持血流动力学稳定及器官功能支持治疗,缺乏靶向病理生理机制的有效防治措施[3]。因此,对脓毒症病理生理改变的深入研究及潜在治疗靶点的探索至关重要。脂质是机体的重要代谢物,在细胞膜构建、能量储存供应及细胞信号转导方面发挥重要作用[4]。脂质代谢作为机体的基本代谢过程之一,与众多疾病发生发展密切相关,且脂质组学目前已成为开发生物标志物及探索疾病发病机制的有力工具[4-5]。随着脂质组学在脓毒症精准医疗中的广泛应用,越来越多的研究表明脂质代谢在脓毒症中发生了特征性改变,与脓毒症免疫炎症反应密切相关,并显示出脂质代谢物在脓毒症诊断、预后及治疗方面的临床应用潜力。
1 脂质代谢与脓毒症病理生理 1.1 脓毒症病理生理条件下脂质代谢变化在炎症风暴、神经内分泌功能失调及线粒体功能障碍等病理过程中,脓毒症患者由于能量供需失衡及代谢酶活性改变,脂质代谢发生众多疾病相关的特异度改变,包括游离脂肪酸增多、胆固醇脂蛋白下调以及甘油磷脂鞘脂代谢紊乱等。
1.1.1 游离脂肪酸增多当前研究认为脓毒症是一种失败的饥饿反应,表现为脂解作用增强而脂肪酸氧化受损,最终导致体内游离脂肪酸(free fatty acids,FFAs)增多[6]。脓毒症会触发应激激素和促炎细胞因子释放,进而引起脂肪组织中脂滴包被蛋白和激素敏感的脂肪酶磷酸化导致脂解增强,促进甘油三酯分解为FFAs和甘油[7]。FFAs氧化产生腺嘌呤核苷三磷酸(adenosine triphosphate,ATP)是机体应激及炎症状态下能量供应的主要方式,然而在脓毒症小鼠中观察到脂肪酸利用明显受阻,其肝脏中调控脂肪酸氧化的核心转录因子过氧化物酶体增殖激活受体α(peroxisome proliferator activated receptor α,PPARα)及下游相关基因明显下调[8],且膈肌中参与脂肪酸氧化的关键酶表达显著降低[9]。脂肪酸氧化受损会加剧脓毒症状态下能量剥夺,从而加重组织器官损伤。此外,在脂解增强及脂肪酸氧化受损共同作用下,机体内增多的FFAs及其毒性中间体可通过促进炎症反应、氧化应激及线粒体功能障碍等机制引发脂肪毒性,进而造成器官功能障碍[10]。
1.1.2 脂蛋白及胆固醇下调脓毒症患者血浆中总胆固醇(total cholesterol,TC)、低密度脂蛋白(low-density lipoprotein,LDL)及高密度脂蛋白(high-density lipoprotein,HDL)浓度下降已得到大量研究的充分证实[11-14]。其中,HDL的变化最受关注。研究显示脓毒症患者血浆中总HDL浓度下降,无功能大颗粒HDL水平升高[13],且HDL中载脂蛋白AI部分被血清淀粉样蛋白替换[12]。脓毒症病理生理条件下脂蛋白及胆固醇水平降低的分子机制目前尚未完全阐明,可能与摄入吸收减少、合成运输受阻及脂多糖(lipopolysaccharide,LPS)清除消耗有关[11]。最近Trinder等通过基因测序及临床遗传学分析发现胆固醇酯转移蛋白(cholesteryl ester- transfer protein,CETP)活性是调控脓毒症患者HDL下降的重要因素[15-16]。胆固醇酯是细胞膜的重要组成成分,与膜流动性及膜受体表达有关,而HDL具有重要的抗炎、抗氧化及LPS清除作用[11]。因此,胆固醇及脂蛋白水平的降低可导致以上重要生理功能受损从而造成不良预后[17]。
1.1.3 甘油磷脂及鞘脂代谢紊乱脓毒症状态下甘油磷脂及鞘脂代谢明显失调,且其代谢产物可通过干扰机体免疫炎症反应参与脓毒症发生发展。磷脂酰胆碱是体内丰度最高的甘油磷脂,其水解产生溶血磷脂酰胆碱(lysophosphatidylcholine,LPC)及花生四烯酸(arachidonic acid,AA)等生物活性脂质。LPC是一类具有免疫调节功能的脂质分子,在脓毒症患者外周血浆及红细胞膜上表达明显下调[18],这与LPC合成酶活性下降而再酰化酶活性升高有关[19]。AA是合成前列腺素(prostaglandins,PGs)、血栓烷(thromboxanes,TXs)及白三烯(leukotrienes,LTs)等促炎脂质介质的重要前体。促炎脂质介质的大量释放会引发脓毒症过度炎症反应,造成器官功能障碍及死亡。靶向脂质组学分析显示脓毒症非幸存者血浆中PGF2α及LTB4明显升高,且PGF2α升高与脓毒症急性呼吸窘迫综合征(septic acute respiratory distress syndrome,SARDS)发生呈正相关[20]。神经酰胺(ceramide,Cer)、鞘氨醇(sphingomyelin,SM)、和鞘氨醇-1-磷酸(sphingosine-1-phosphate,S1P)是鞘脂代谢途径中的重要产物,具有免疫调节功能。多项研究指出脓毒症患者血浆中Cer浓度升高而SM及S1P降低,且其变化程度对脓毒症患者预后有一定预测价值[21-22]。
1.2 脂质代谢与脓毒症免疫炎症反应 1.2.1 脂质过氧化促进脓毒症免疫炎症反应脂质过氧化是自由基引发的膜脂质氧化过程,是生物体内最重要的氧化自由基损伤类型[23]。随着对脓毒症脂质过氧化的研究不断深入,许多研究指出脂质过氧化可增强脓毒症过度炎症反应从而促进脓毒症发生发展。Kang等[24]发现脂质过氧化可促进炎症小体的激活及焦孔素D的切割从而触发巨噬细胞焦亡引发致死性炎症反应。除焦亡外,脂质过氧化还可引起铁死亡[25]。铁死亡是一种独特的由铁依赖性脂质过氧化引起的程序性细胞死亡方式[25]。动物实验显示在脓毒症小鼠中抑制铁死亡可明显减轻机体炎症反应从而改善脓毒症脑病[26]及心肌损伤[27]。此外,Li等[28]还发现脓毒症小鼠树突状细胞铁死亡影响其表型成熟,表现为介导T细胞增殖分化能力下降,进而影响脓毒症免疫反应。
1.2.2 脂蛋白与脓毒症免疫炎症反应脓毒症患者血浆中脂蛋白浓度普遍下降,且与不良预后相关,这提示脂蛋白在脓毒症中可能具有保护作用[17]。多项研究显示外源性输注重组HDL可通过促进LPS清除[29]、抑制NF-κB通路激活[29]及调节固有免疫细胞应答[29-30]等途径降低脓毒症小鼠炎症反应水平,减轻血管内皮功能障碍从而改善肾损伤。其中值得注意的是,Stasi等[30]还通过临床试验证实了外源性补充重组HDL的抑炎保护作用。除HDL外,LDL[31]、VLDL[32]及其受体亦可通过清除LPS减轻脓毒症炎症反应,如抑制参与胆固醇稳态调节的代谢酶——前蛋白转化酶枯草杆菌蛋白酶kexin 9型(proprotein convertase subtilisin/kexin type 9,PCSK9)可通过提高LDL受体表达促进脓毒症小鼠及患者体内LPS清除[31]。有趣的是,最近一项研究显示氧化HDL可通过脂氧合酶1及toll样受体4改变凝血因子及内皮细胞黏附蛋白表达促进血管炎症引起脓毒症凝血功能障碍发生[33]。
2 脂质代谢物在脓毒症诊断、预后及治疗中的作用 2.1 脂质代谢物在脓毒症诊断及预后中的作用 2.1.1 酰基肉碱血浆酰基肉碱作为表征脂肪酸β氧化缺陷的重要标志物在代谢性疾病中受到广泛关注,但近年来许多研究报道其在脓毒症诊断及预后方面亦具有巨大潜力[34]。一项针对重症监护病房脓毒症及非感染性系统性炎症反应综合征(systemic inflammatory response syndrome,SIRS)患者的靶向代谢组学分析显示酰基肉碱是脓毒症诊断的有效标志物,其区分脓毒症与非感染性SIRS的准确度大于80%[35]。此外,血浆酰基肉碱水平还与脓毒症严重程度及病死率呈正相关。一项多中心观察性研究发现血浆高乙酰肉碱患者(≥6 000 ng/mL)28 d病死率是低水平患者的5倍,且其水平还与肝肾功能障碍及高乳酸血症相关[36]。
2.1.2 甘油磷脂与鞘脂甘油磷脂及鞘脂在脓毒症中的特征性变化显示出其作为诊断及预后标志物的潜力,且目前已在许多研究中得到证实。Lee等[37-38]利用MALDI-TOF质谱法发现血浆LPC水平可有效区分脓毒症与肺炎患者以及脓毒症与非感染SIRS患者(敏感度及特异度均大于90%),且预后分析显示LPC变化值预测脓毒症患者28 d病死率的受试者工作特征曲线下面积(area under the receiver operating characteristic curve,AUC)为0.7。除甘油磷脂外,Cer、SM及S1P等鞘脂代谢物在脓毒症病情评估及预后判断方面亦有重要作用。Wu等[22]通过测量脓毒症及非感染SIRS患者血浆Cer及S1P发现Cer/S1P是脓毒症患者死亡结局的良好预测指标,AUC高达0.95。此外,研究[21-22]还发现血浆低S1P水平与序贯性脏器衰竭评分(sequential organ failure assessment,SOFA)及凝血功能障碍发生显著相关。
2.1.3 胆固醇脂及脂蛋白胆固醇及脂蛋白水平是脓毒症不良预后的有效预测因子。多项研究显示HDL及其组分的血浆浓度与脓毒性休克发生、不良预后(如呼吸衰竭、急慢性肾功能不全等)及病死率呈显著负相关[39-41],且Hamilton等[40]进一步指出小颗粒HDL与脓毒症不良预后及病死率相关性最强。除浓度及颗粒大小外,HDL组分变化对脓毒症预后评估的价值亦有报道。脓毒症患者HDL中氧化磷脂水平持续升高,且其预测28 d病死率的AUC约为85%[42]。除HDL外,最新的一项观察性研究发现SARDS患者入院后48~72 h血浆LDL水平更低,且预后分析显示持续性低TC、LDL及HDL水平与SARDS患者死亡呈正相关[14]。此外,本团队既往研究报道胆固醇氧化产物7-酮胆固醇诊断脓毒症及脓毒性休克的AUC均大于80%,而且利用7-酮胆固醇联合临床特征开发的预测模型可有效预测28 d病死率[43]。
2.2 脂质代谢物在脓毒症治疗中的作用质代谢与脓毒症免疫炎症反应密切相关,因此靶向脂质代谢,如抑制脂质过氧化及补充HDL等,可能是脓毒症的有效治疗手段。目前已有大量动物实验证实对乙酰氨基酚、鸢尾素及褪黑素等众多药物可通过减轻脂质过氧化、抑制铁死亡改善脓毒症器官功能损害[44]。在临床试验方面,在随机对照试验[45]发现标准疗法结合抗氧化剂辅助治疗可减轻脓毒性休克患者脂质过氧化,并有效降低患者SOFA评分及炎症因子水平。除抑制脂质过氧化外,补充HDL亦是脓毒症的潜在治疗手段。在脓毒症小鼠中补充重组HDL或抑制CETP可通过提高HDL有效改善脓毒症小鼠肺损伤及肾损伤,提高其生存率[29, 46]。同样,在Stasi等[30]进行的一项由腹腔或泌尿系感染所致脓毒症患者组成的随机对照试验中,输注重组HDL可显著降低脓毒症急性肾损伤发生率。目前靶向脂质代谢以治疗脓毒症的相关研究虽已取得一定成果,但仍需要进一步探索。
3 结论与展望脂质代谢作为机体代谢活动的重要组成部分,可通过影响脓毒症免疫炎症反应参与脓毒症发生发展,且脂质代谢物在作为脓毒症诊断预后标志物及治疗靶点方面具有一定潜能。尽管目前已经开展了许多脓毒症脂质代谢相关研究,但是仍需要更多基础研究深入挖掘相关机制并开展更多临床研究提供高质量证据以促进临床转化。随着对脓毒症脂质代谢的认识越来越深入,可以寻找到适合临床推广的脓毒症诊断及预后脂质标志物,开发出可改善预后且安全可靠的脂质代谢治疗靶点。
利益冲突 所有作者声明无利益冲突
[1] | Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. JAMA, 2016, 315(8): 801-810. DOI:10.1001/jama.2016.0287 |
[2] | Weng L, Xu Y, Yin P, et al. National incidence and mortality of hospitalized sepsis in China[J]. Crit Care, 2023, 27(1): 84. DOI:10.1186/s13054-023-04385-x |
[3] | 齐文旗, 张斌, 郑忠骏, 等. 拯救脓毒症运动: 2021年国际脓毒症和脓毒性休克管理指南[J]. 中华急诊医学杂志, 2021, 30(11): 1300-1304. DOI:10.3760/cma.j.issn.1671-0282.2021.11.003 |
[4] | Bian XL, Liu R, Meng Y, et al. Lipid Metabolism and cancer[J]. J Exp Med, 2021, 218(1): e20201606. DOI:10.1084/jem.20201606 |
[5] | Wang RX, Li BW, Lam SM, et al. Integration of lipidomics and Metabolomics for in-depth understanding of cellular mechanism and disease progression[J]. J Genet Genomics, 2020, 47(2): 69-83. DOI:10.1016/j.jgg.2019.11.009 |
[6] | Vandewalle J, Libert C. Sepsis: a failing starvation response[J]. Trends Endocrinol Metab, 2022, 33(4): 292-304. DOI:10.1016/j.tem.2022.01.006 |
[7] | Rittig N, Bach E, Thomsen HH, et al. Regulation of lipolysis and adipose tissue signaling during acute endotoxin-induced inflammation: a human randomized crossover trial[J]. PLoS One, 2016, 11(9): e0162167. DOI:10.1371/journal.pone.0162167 |
[8] | Van Wyngene L, Vanderhaeghen T, Timmermans S, et al. Hepatic PPARα function and lipid Metabolic pathways are dysregulated in polymicrobial sepsis[J]. EMBO Mol Med, 2020, 12(2): e11319. DOI:10.15252/emmm.201911319 |
[9] | Feingold KR, Moser A, Patzek SM, et al. Infection decreases fatty acid oxidation and nuclear hormone receptors in the diaphragm[J]. J Lipid Res, 2009, 50(10): 2055-2063. DOI:10.1194/jlr.M800655-JLR200 |
[10] | Yoon H, Shaw JL, Haigis MC, et al. Lipid Metabolism in sickness and in health: emerging regulators of lipotoxicity[J]. Mol Cell, 2021, 81(18): 3708-3730. DOI:10.1016/j.molcel.2021.08.027 |
[11] | Hofmaenner DA, Kleyman A, Press A, et al. The many roles of cholesterol in sepsis: a review[J]. Am J Respir Crit Care Med, 2022, 205(4): 388-396. DOI:10.1164/rccm.202105-1197tr |
[12] | van Leeuwen HJ, Heezius ECJM, Dallinga GM, et al. Lipoprotein Metabolism in patients with severe sepsis[J]. Crit Care Med, 2003, 31(5): 1359-1366. DOI:10.1097/01.CCM.0000059724.08290.51 |
[13] | Tanaka S, Diallo D, Delbosc S, et al. High-density lipoprotein (HDL) particle size and concentration changes in septic shock patients[J]. Ann Intensive Care, 2019, 9(1): 68. DOI:10.1186/s13613-019-0541-8 |
[14] | Black LP, Hopson C, Barker G, et al. Trends in cholesterol and lipoproteins are associated with acute respiratory distress syndrome incidence and death among sepsis patients[J]. Shock, 2024, 61(2): 260-265. DOI:10.1097/SHK.0000000000002295 |
[15] | Trinder M, Genga KR, Kong HJ, et al. Cholesteryl ester transfer protein influences high-density lipoprotein levels and survival in sepsis[J]. Am J Respir Crit Care Med, 2019, 199(7): 854-862. DOI:10.1164/rccm.201806-1157OC |
[16] | Trinder M, Wang YN, Madsen CM, et al. Inhibition of cholesteryl ester transfer protein preserves high-density lipoprotein cholesterol and improves survival in sepsis[J]. Circulation, 2021, 143(9): 921-934. DOI:10.1161/CIRCULATIONAHA.120.048568 |
[17] | Tanaka S, De Tymowski C, Stern J, et al. Relationship between liver dysfunction, lipoprotein concentration and mortality during sepsis[J]. PLoS One, 2022, 17(8): e0272352. DOI:10.1371/journal.pone.0272352 |
[18] | Ahn WG, Jung JS, Kwon HY, et al. Alteration of lysophosphatidylcholine-related Metabolic parameters in the plasma of mice with experimental sepsis[J]. Inflammation, 2017, 40(2): 537-545. DOI:10.1007/s10753-016-0500-6 |
[19] | Mecatti GC, Fernandes Messias MC, Sant'Anna Paiola RM, et al. Lipidomic profiling of plasma and erythrocytes from septic patients reveals potential biomarker candidates[J]. Biomark Insights, 2018, 13: 1177271918765137. DOI:10.1177/1177271918765137 |
[20] | Dalli J, Colas RA, Quintana C, et al. Human sepsis eicosanoid and proresolving lipid mediator temporal profiles: correlations with survival and clinical outcomes[J]. Crit Care Med, 2017, 45(1): 58-68. DOI:10.1097/CCM.0000000000002014 |
[21] | Piotti A, Novelli D, Meessen JMTA, et al. Endothelial damage in septic shock patients as evidenced by circulating syndecan-1, sphingosine-1-phosphate and soluble VE-cadherin: a substudy of ALBIOS[J]. Crit Care, 2021, 25(1): 113. DOI:10.1186/s13054-021-03545-1 |
[22] | Wu XL, Hou JC, Li H, et al. Inverse correlation between plasma sphingosine-1-phosphate and ceramide concentrations in septic patients and their utility in predicting mortality[J]. Shock, 2019, 51(6): 718-724. DOI:10.1097/SHK.0000000000001229 |
[23] | Valgimigli L. Lipid peroxidation and antioxidant protection[J]. Biomolecules, 2023, 13(9): 1291. DOI:10.3390/biom13091291 |
[24] | Kang R, Zeng L, Zhu S, et al. Lipid peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis[J]. Cell Host Microbe, 2018, 24(1): 97-108.e4. DOI:10.1016/j.chom.2018.05.009 |
[25] | Jiang XJ, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021, 22(4): 266-282. DOI:10.1038/s41580-020-00324-8 |
[26] | Wang HS, Xu LX, Tang XJ, et al. Lipid peroxidation-induced ferroptosis as a therapeutic target for mitigating neuronal injury and inflammation in sepsis-associated encephalopathy: insights into the hippocampal PEBP-1/15-LOX/GPX4 pathway[J]. Lipids Health Dis, 2024, 23(1): 128. DOI:10.1186/s12944-024-02116-x |
[27] | Liu C, Zou Q, Tang HX, et al. Melanin nanoparticles alleviate sepsis-induced myocardial injury by suppressing ferroptosis and inflammation[J]. Bioact Mater, 2022, 24: 313-321. DOI:10.1016/j.bioactmat.2022.12.026 |
[28] | Li JY, Ren C, Wang LX, et al. Sestrin2 protects dendrite cells against ferroptosis induced by sepsis[J]. Cell Death Dis, 2021, 12(9): 834. DOI:10.1038/s41419-021-04122-8 |
[29] | Guo L, Morin EE, Yu MZ, et al. Replenishing HDL with synthetic HDL has multiple protective effects against sepsis in mice[J]. Sci Signal, 2022, 15(725): eabl9322. DOI:10.1126/scisignal.abl9322 |
[30] | Stasi A, Fiorentino M, Franzin R, et al. Beneficial effects of recombinant CER-001 high-density lipoprotein infusion in sepsis: results from a bench to bedside translational research project[J]. BMC Med, 2023, 21(1): 392. DOI:10.1186/s12916-023-03057-5 |
[31] | Walley KR, Thain KR, Russell JA, et al. PCSK9 is a critical regulator of the innate immune response and septic shock outcome[J]. Sci Transl Med, 2014, 6(258): 258ra143. DOI:10.1126/scitranslmed.3008782 |
[32] | Shimada T, Topchiy E, Leung AKK, et al. Very low density lipoprotein receptor sequesters lipopolysaccharide into adipose tissue during sepsis[J]. Crit Care Med, 2020, 48(1): 41-48. DOI:10.1097/CCM.0000000000004064 |
[33] | Prado Y, Tapia P, Eltit F, et al. Sepsis-induced coagulopathy phenotype induced by oxidized high-density lipoprotein associated with increased mortality in septic-shock patients[J]. Antioxidants (Basel), 2023, 12(3): 543. DOI:10.3390/antiox12030543 |
[34] | Dambrova M, Makrecka-Kuka M, Kuka J, et al. Acylcarnitines: nomenclature, biomarkers, therapeutic potential, drug targets, and clinical trials[J]. Pharmacol Rev, 2022, 74(3): 506-551. DOI:10.1124/pharmrev.121.000408 |
[35] | Schmerler D, Neugebauer S, Ludewig K, et al. Targeted Metabolomics for discrimination of systemic inflammatory disorders in critically ill patients[J]. J Lipid Res, 2012, 53(7): 1369-1375. DOI:10.1194/jlr.P023309 |
[36] | Chung KP, Chen GY, Chuang TY, et al. Increased plasma acetylcarnitine in sepsis is associated with multiple organ dysfunction and mortality: a multicenter cohort study[J]. Crit Care Med, 2019, 47(2): 210-218. DOI:10.1097/CCM.0000000000003517 |
[37] | Park JM, Noh JY, Kim MJ, et al. MALDI-TOF mass spectrometry based on parylene-matrix chip for the analysis of lysophosphatidylcholine in sepsis patient sera[J]. Anal Chem, 2019, 91(22): 14719-14727. DOI:10.1021/acs.analchem.9b04019 |
[38] | Lee EH, Shin MH, Park JM, et al. Diagnosis and mortality prediction of sepsis via lysophosphatidylcholine 16: 0 measured by MALDI-TOF MS[J]. Sci Rep, 2020, 10(1): 13833. DOI:10.1038/s41598-020-70799-0 |
[39] | Roveran Genga K, Lo C, Cirstea M, et al. Two-year follow-up of patients with septic shock presenting with low HDL: the effect upon acute kidney injury, death and estimated glomerular filtration rate[J]. J Intern Med, 2017, 281(5): 518-529. DOI:10.1111/joim.12601 |
[40] | Hamilton F, Pedersen KM, Ghazal P, et al. Low levels of small HDL particles predict but do not influence risk of sepsis[J]. Crit Care, 2023, 27(1): 389. DOI:10.1186/s13054-023-04589-1 |
[41] | 谭睿, 杨鹏磊, 王晶, 等. 载脂蛋白A-I联合血清淀粉样蛋白A判断脓毒症及脓毒症休克患者的病情及预后价值[J]. 中华急诊医学杂志, 2024, 33(5): 643-650. DOI:10.3760/cma.j.issn.1671-0282.2024.05.009 |
[42] | Li ZH, Luo ZT, Shi XQ, et al. The levels of oxidized phospholipids in high-density lipoprotein during the course of sepsis and their prognostic value[J]. Front Immunol, 2022, 13: 893929. DOI:10.3389/fimmu.2022.893929 |
[43] | Zhang YY, Xu S, Xu JX, et al. Prognostic value of plasma 7-ketocholesterol in sepsis[J]. Clin Chim Acta, 2023, 548: 117467. DOI:10.1016/j.cca.2023.117467 |
[44] | Huo L, Liu CF, Yuan YJ, et al. Pharmacological inhibition of ferroptosis as a therapeutic target for sepsis-associated organ damage[J]. Eur J Med Chem, 2023, 257: 115438. DOI:10.1016/j.ejmech.2023.115438 |
[45] | Aisa-Alvarez A, Soto ME, Guarner-Lans V, et al. Usefulness of antioxidants as adjuvant therapy for septic shock: a randomized clinical trial[J]. Medicina (Kaunas), 2020, 56(11): 619. DOI:10.3390/medicina56110619 |
[46] | Trinder M, Wang YN, Madsen CM, et al. Inhibition of cholesteryl ester transfer protein preserves high-density lipoprotein cholesterol and improves survival in sepsis[J]. Circulation, 2021, 143(9): 921-934. DOI:10.1161/CIRCULATIONAHA.120.048568 |