中华急诊医学杂志  2024, Vol. 33 Issue (8): 1104-1109   DOI: 10.3760/cma.j.issn.1671-0282.2024.08.006
伊马替尼通过Nrf2/HO-1信号通路调节脂多糖诱导的小鼠急性肺损伤的机制
李端阳1 , 刘雅茹1 , 周芷晴1 , 杨红2 , 宗晓龙3 , 李真玉1     
1. 天津医科大学第二医院急诊医学科,天津 300211;
2. 天津医科大学基础医学院药理学系,天津 300070;
3. 天津医科大学第二医院检验科,天津 300211
摘要: 目的 评价伊马替尼对内毒素血症急性肺损伤小鼠的影响。方法 采用随机数字表法将60只8~12周龄的SPF级雄性C57BL/6小鼠分为4组(n=15): 对照组(C组)、伊马替尼组(I组)、内毒素血症组(LPS组)和伊马替尼+内毒素血症组(I+LPS组)。复制内毒素血症急性肺损伤小鼠模型,24 h后处死小鼠,观察小鼠肺组织病理学检测结果并进行肺损伤评分,测量肺组织湿/干比;ELISA法检测血清肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)和白细胞介素-6 (IL-6)的表达;试剂盒检测肺组织丙二醛(malondialdehyde, MDA)、谷胱甘肽(glutathione, GSH)、过氧化氢酶(catalase, CAT)、超氧化物歧化酶(superoxide dismutase, SOD)和还原型谷胱甘肽/氧化型谷胱甘肽(GSH/GSSG)水平;Western blot法分析肺组织核转录因子κB(NF-κB)的磷酸化水平、核转录因子红系2相关因子2(nuclear factor-erythroid 2-related factor 2, Nrf2)及血红素氧合酶1(heme oxygenase-1,HO-1)的表达水平。结果 与C组相比较,LPS组的肺湿/干比比值[(3.47±0.41)vs. (5.58±0.47)]及肺损伤评分[(1.25±0.89) vs. (10.25±1.75)]升高(P < 0.05),血清中TNF-α和IL-6水平上调(P < 0.05),SOD、CAT、GSH、GSH/GSSG水平降低(P < 0.05),MDA水平增加,p-NF-κB、Nrf2和HO-1蛋白表达上调(均P < 0.05);与LPS组比较,I+LPS组肺W/D比值[(5.58±0.47) vs.(4.62±0.38)]及肺损伤评分[(10.25±1.75) vs.(7.00±1.31)]下降(P < 0.05),血清TNF-α和IL-6水平下降(P < 0.05),SOD、CAT、GSH、GSH/GSSG水平升高(P < 0.05),MDA水平下调(P < 0.05),p-NF-κB蛋白表达下降,Nrf2和HO-1蛋白表达升高(P < 0.05)。结论 伊马替尼可改善脓毒症急性肺损伤,其机制可能与抑制氧化应激有关。
关键词: 内毒素血症    急性肺损伤    伊马替尼    血红素加氧酶-1    氧化应激    脂多糖    核转录因子红系2相关因子2    核因子κB    
The mechanism of imatinib on the regulation of lipopolysaccharide-induced acute lung injury in mice through the Nrf2/HO-1 signaling pathway
Li Duanyang1 , Liu Yaru1 , Zhou Zhiqing1 , Yang Hong2 , Zong Xiaolong3 , Li Zhenyu1     
1. Department of Emergency Medicine, The Second Hospital of Tianjin Medical University, Tianjin 300211, China;
2. Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China;
3. Department of Clinical Laboratory, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
Abstract: Objective To evaluate the effect of imatinib on the endotoxemia-induced acute lung injury in mice. Methods Sixty SPF male, 8-12 weeks, C57BL/6 mice were randomly (random) divided into 4 groups (n=15 each): control group (group C), imatinib group (groupⅠ), endotoxemia group (group LPS) and imatinib + endotoxemia group (group I+LPS). The endotoxemia model of acute lung injury was established. After 24 hours, the mice were sacrificed. The pathological changes of lung tissues were evaluated, the lung injury scores were calculated, and the wet/dry ratios of lung tissues were measured. ELISA was used to detect the levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in serum. Detection kits were used to analyze the levels of malondialdehyde (MDA), glutathione (GSH), catalase (CAT), superoxide dismutase (SOD) and the ratio of reduced glutathione to oxidized glutathione (GSH/GSSG) in lung tissues; The expression levels of phosphorylated nuclear factor-kappa B (p-NF-κB), nuclear factor-erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in lung tissues were analyzed by western blotting. Results Compared with the group C, the wet/dry (W/D) ratio of lungs [(3.47±0.41)vs. (5.58±0.47)], lung injury scores [(1.25±0.89) vs. (10.25±1.75)], and the levels of TNF-α and IL-6 in serum increased in the group LPS (P < 0.05). The levels of SOD, CAT, GSH and GSH/GSSG decreased, the level of MDA increased, and the expression of p-NF-κB, Nrf2 and HO-1 protein up-regulated (P < 0.05). Compared with the LPS group, the W/D ratio of lungs [(5.58±0.47) vs.(4.62±0.38)] and lung injury scores [(10.25±1.75) vs. (7.00±1.31)] in the I+LPS group decreased (P < 0.05), and the levels of TNF-α and IL-6 in the serum decreased (P < 0.05). In lung tissues, the levels of SOD, CAT, GSH and GSH/GSSG increased (all P < 0.05), the level of MDA decreased (all P < 0.05), the expression of p-NF-κB protein decreased, and the expression of Nrf2 and HO-1 protein increased (P < 0.05). Conclusions Imatinib improves sepsis-induced acute lung injury in mice, and the mechanism of actions behind may be related to the inhibition of oxidative stress.
Key words: Endotoxemia    Acute lung injury    Imatinib    Heme oxygenase-1    Oxidative stress    Lipopolysaccharide    Nuclear factor-erythroid 2-related factor 2    nuclear factor-kappa B    

急性肺损伤(acute lung injury,ALI)是一种危及生命的疾病,其特征是失控的炎症反应和血管通透性增加[1],其机制包括肺上皮和内皮的损伤、氧化应激的损伤、促炎介质的产生和大量中性粒细胞募集入肺等 [2-4]。而氧化应激增强炎症细胞的募集和激活,从而导致炎症反应级联放大,从而导致细胞损伤[5]。研究表明,ABL激酶在炎症和血管渗漏中发挥作用。伊马替尼是第一个获得FDA批准的ABL激酶抑制剂,已被证明在许多氧化剂诱导的损伤模型中具有保护作用 [7],但具体机制尚未确定。核因子红细胞2相关因子2/血红素氧合酶-1 (Nrf2/HO-1)信号通路是抗氧化应激的重要信号通路,损伤激活后可调节抗氧化物质的释放,从而抑制氧化应激[8-9]。本研究通过建立内毒素血症急性肺损伤小鼠模型,探讨伊马替尼能否通过核因子红细胞2相关因子2/血红素氧合酶-1 (Nrf2/HO-1)信号通路减轻氧化应激减轻内毒素性急性肺损伤。

1 材料与方法

本研究经天津医科大学动物伦理与福利委员会批准,审查编号TMUaMEC 2023002。伊马替尼购自美国Abmole公司,大肠杆菌O111:B4产LPS购自美国Sigma-Aldrich公司,TNF-α及IL-6 Elisa试剂盒购自美国Invitrogen,Nrf2、HO-1购自美国CST公司,p-NF-κB、β-actin、山羊抗兔二抗购自美国abcam公司,丙二醛(malondialdehyde,MDA) 检测试剂盒、谷胱甘肽(glutathione, GSH)检测试剂盒、过氧化氢酶(catalase, CAT)检测试剂盒、超氧化物歧化酶(superoxide dismutase, SOD)检测试剂盒和还原型谷胱甘肽/氧化型谷胱甘肽(GSH/GSSG)检测试剂盒均购自南京建成生物,RIPA裂解液购自武汉Servicebio公司。

选用60只体重20~25 g的SPF级6~8周龄雄性C57BL/6小鼠。将小鼠用随机数字表法分为4组(每组n=15): 对照组(C组)、伊马替尼组(I组)、内毒素血症组(LPS组)、伊马替尼+内毒素血症组(I+LPS组)。

采用腹腔注射LPS 15 mg/kg制备内毒素血症急性肺损伤小鼠模型,C组与I组腹腔注射等量生理盐水。伊马替尼溶解于10%的DMSO中,I+LPS组于造模前30 min、I组于相应时点,尾静脉注射伊马替尼40 mg/kg,C组与LPS组同一时点尾静脉注射等量生理盐水。造模24 h后,进行样本取材。

取新鲜右肺组织,称重后80 ℃烘箱连续烘干48 h后再次称重,计算前后两次即肺湿重∕干重(W∕D)比值。取左肺组织,4%多聚甲醛固定48 h,进行石蜡包埋和切片,HE染色后,光镜下观察肺组织病理改变并进行病理评分。

1.1 ELISA检测TNF-α及IL-6水平

取小鼠心尖血,离心机4℃预冷,3 500 r/min离心15 min后取上清液,根据ELISA试剂盒说明书,测定血清TNF-α和IL-6水平,在酶标仪波长450 nm上读取吸光度值。

1.2 检测肺组织中MDA、SOD、T-GSH/GSSH、CAT、LDH水平

取肺组织,称重后按1∶9的比例加入磷酸盐缓冲液(phosphate buffered sawater,PBS),剪碎离心,制备成10%匀浆上清液; 按试剂盒说明书步骤测定MDA、SOD、GSH、CAT、LDH吸光度值,然后计算其含量。

1.3 Western blot检测

取右肺组织,采用Western blot法检测核转录因子红系2相关因子2 (Nrf2)及血红素氧合酶1(HO-1)蛋白表达水平。肺组织称重,剪碎,加入RIPA裂解液、蛋白酶抑制剂和磷酸酶抑制剂,4℃下12 000 r/min离心15 min,离心半径5 cm,收集上清液,BCA法测定蛋白浓度。按1:4比例加入4x蛋白上样缓冲液,SDS-聚丙烯酰胺凝胶电泳分离目的蛋白,冰浴转膜后,应用含0.1% Tween-20和5%脱脂牛奶的TBS缓冲液室温封闭印迹膜1 h,洗膜后加入一抗Nrf2抗体(1:1000)、HO-1抗体(1:1000)、p-NF-κB(1:1000)4℃孵育过夜。TBST洗膜3次,加入过氧化物酶标记的二抗(1:5000),室温孵育2 h,TBST洗膜3次后加入荧光化学发光液显影,用Image J软件分析图像,目的蛋白相对表达量以目的蛋白条带灰度值与β-actin条带灰度值的比值表示。

1.4 统计学方法

采用SPSS20.0软件进行分析,正态分布的计量资料以均数±标准差(x±s)表示,组间比较采用单因素方差分析,计数资料比较采用χ2检验,以P > 0.05为差异有统计学意义。

2 结果 2.1 四组小鼠病理损伤情况

与C组和I组相比,LPS组小鼠肺部色泽暗红,分布大小不一的出血点,偶见散在斑块状出血,切面可见泡沫状淡红色液体流出:I+LPS组较LPS组损伤情况略轻。光镜下:C组和I组肺组织未见明显异常;LPS组可见肺泡结构严重破坏,肺间质增宽,肺泡腔有出血、水肿,大量中性粒细胞浸润;I+LPS组小鼠肺间质增宽,肺泡腔出血、水肿,中性粒细胞浸润较LPS组减轻;C组与I组比较,差异无统计学意义(P > 0.05)。见图 1。与C组相比,LPS组及I+LPS组肺组织W/D比值及肺损伤评分升高(P > 0.05),I组上述指标差异无统计学意义(P > 0.05)。与LPS组比较,I+LPS肺组织W/D比值及肺损伤评分降低(P > 0.05),见表 1

图 1 光镜下四组小鼠肺组织病理学结果(HE染色×200) Fig 1 The pathology results of mice lung tissue under light microscopy in the four groups(HE staining x200)

表 1 四组小鼠肺组织W/D比值及肺损伤评分的比较(n=5,x±s) Table 1 Comparison of W/D ratio and lung injury score in the mice lung tissuein the four groups(n=5, x±s)
组别 肺W/D比值 肺损伤评分(分)
C组 3.47±0.41 1.25±0.89
I组 3.75±0.06 1.50±0.76
LPS组 5.58±0.47 10.25±1.75
I+LPS组 4.62±0.38 7.00±1.31
F 20.00 100.50
P < 0.0001 < 0.0001
注:W/D比值为湿重/干重比值
2.2 四组小鼠血清炎症因子水平变化

与C组相比,LPS组和I+LPS组小鼠血清中的TNF-α和IL-6水平明显升高(P > 0.05),I组差异无统计学意义(P > 0.05)。与LPS组比较,I+LPS组TNF-α和IL-6水平显著降低(P > 0.05),见表 2

表 2 四组小鼠血清中TNF-α和IL-6浓度的比较(ng/L,n=5,x±s) Table 2 Comparison of serum concentration of TNF alpha and IL - 6 in mice in the four groups(ng/L, n=5, x±s)
组别 IL-6 TNF-α
C组 12.31±3.14 34.07±5.01
I组 15.77±2.93 48.76±0.91
LPS组 1909.00±88.73 124.50±37.20
I+LPS组 778.50±33.10 65.23±4.33
F 91.64 22.04
P P < 0.0001 P < 0.0001
注:IL-6为白细胞介素; TNF-α为肿瘤坏死因子α
2.3 四组小鼠氧化应激水平变化

与C组相比,LPS组丙二醛(MDA)表达显著升高,过氧化氢酶(CAT)、超氧化物歧化酶(SOD)和谷胱甘肽(GSH)表达显著降低(P < 0.05),I+LPS组给予药物治疗后均有显著恢复(P < 0.05),见表 3

表 3 四组小鼠肺组织MDA、SOD、CAT、GSH和GSH/GSSH的比较(n=5,x±s) Table 3 Comparison of lung tissue MDA, SOD, CAT, GSH and GSH/GSSH in mice in the four groups(n=5, x±s)
组别 MDA(μmol/g) SOD (U/mgprot) CAT (U/mgprot) GSH(μmol/g) GSH/GSSG
C组 1.05±0.11 23.01±3.38 22.73±1.08 13.07±0.65 3.83±0.32
I组 1.14±0.13 17.36±2.56 19.81±0.77 10.40±0.80 3.63±0.23
LPS组 5.55±0.70 5.07±1.14 12.92±1.26 4.03±0.52 2.31±0.21
I+LPS组 3.08±0.80 14.10±1.79 16.31±0.85 6.83±1.09 3.05±0.07
F 76.84 50.10 88.83 124.6 46.55
P < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
注:MDA为丙二醛,SOD为超氧化物歧化酶,CAT为过氧化氢酶,GSH为还原型谷胱甘肽,GSH/GSSG为还原型谷胱甘肽/氧化型谷胱甘肽
2.4 四组小鼠Nrf2及HO-1蛋白水平变化

与C组相比,I组Nrf2、HO-1和p-NF-κB表达差异无统计学意义(P > 0.05),LPS组和I+LPS组Nrf2和HO-1表达上调,p-NF-κB升高(P > 0.05)。与LPS组相比,I+LPS组Nrf2和HO-1表达水平更为升高,p-NF-κB水平下降(P > 0.05)。见图 2

与C组比较,aP < 0.05;与LPS组比较,bP < 0.05 图 2 四组小鼠肺组织Nrf2、HO-1、p-NF-κB蛋白表达及相对表达水平 Fig 2 Expression and the relative expression of Nrf2、HO-1、p-NF-κB in mice lung tissue in the four groups
3 讨论

急性肺损伤特征是肺血管通透性增加、肺水肿、中性粒细胞过度迁移以及促炎细胞因子和介质释放[10]。急性肺损伤的常见原因是严重感染,主要由革兰氏阴性菌细胞壁中的LPS引起[11]。本研究参照文献[12]的方法,采用腹腔注射LPS 15 mg/kg制备内毒素血症急性肺损伤模型,并于造模后24 h检测。本研究显示,造模后24 h,小鼠出现呼吸频率加快、活动度下降、眼部分泌物增多、寒战、毛发树立等表现,病理切片显示肺泡正常结构消失,肺间隔增厚,肺血管壁通透性严重破坏,炎症细胞浸润,同时血清IL-6、TNF-α等炎症因子及肺组织氧化应激指标升高,提示内毒素血症急性肺损伤模型建立成功。

本研究发现,在LPS诱导的脓毒症急性肺损伤小鼠中,炎症因子释放增加,氧化应激产物MDA水平升高,抗氧化酶SOD、GSH水平降低,NF-κB、Nrf2和HO-1表达上调。伊马替尼处理后,炎症因子产生减少,氧化应激损伤减轻。伊马替尼是第一个获得美国食品药品监督管理局(FDA)批准的酪氨酸激酶抑制剂,最初是通过抑制BCR-Abl融合蛋白来治疗慢性粒细胞白血病的,它还作用于c-Abl、abl相关基因(Arg)等多种激酶。既往研究表明,它对人类和实验动物也有有益的药理作用,如抗炎、抗纤维化和改善血管渗漏作用[13-16]。Abl位点活化可以激活NF-κB通路,在LPS激活炎症细胞和随后的TNF-α产生中起重要作用[17];在内毒素血症小鼠模型中,抑制Abl激酶可调节中性粒细胞外陷阱形成[18],减少炎症细胞因子水平[19],NF-κB激活介导促炎细胞因子如TNF-α、IL-1β和IL-6的转录,进而增强炎症反应,从而促进ALI和其他炎性疾病的发展[20]。笔者前期研究证明[21],Abl和Src双靶点抑制剂博舒替尼可以通过减轻炎症损伤,来减轻内毒素急性肺损伤。NF-κB可调节各种免疫反应和不同炎性细胞因子的表达。NF-κB可调节IL-6和TNF-α的表达。本研究中,伊马替尼预处理显著抑制小鼠IL-6、TNF-α的产生。

Nrf2是调控氧化应激的重要转录因子,氧化应激是许多疾病的共同特征,包括神经退行性疾病、心血管疾病、气道疾病和一些病毒感染。Nrf2在多种组织中表达,小鼠的肠道、肺和肾脏中表达最丰富。Nrf2其特异性受体Kelch样环氧氯丙烷相关蛋白1(Kelch-like ECH-associated protein 1, Keap1)在氧化应激损伤时参与活化[22]。在正常状态下,Keap1与Nrf2相互作用,抑制Nrf2的活性。机体受到刺激发生氧化应激损伤,活性氧会修饰Keap1蛋白的半胱氨酸残基,使其释放Nrf2,导致Nrf2的积累及其向细胞核的易位,与抗氧化反应元件(anti - oxide response elements, ARE)结合,启动下游抗氧化酶的转录和表达,包括HO-1和SOD和GSH,进而保护机体免受氧化应激的损伤[22-25]。在本研究中,LPS显著诱导氧化应激,Nrf2和HO-1的表达升高。此外已有证据表明Nrf2/HO-1的激活可以调节其对NF-κB的抑制同时NF-κB在转录水平上可以抑制了Nrf2信号传导。抑制NF-κB,可增加HO-1 mRNA和蛋白表达[25]。而LPS刺激会诱导Nrf2和NF-κB的激活[26],两种转录因子不太可能完全相互作用。在本研究中,伊马替尼治疗后p-NF-κB表达下降,Nrf2和HO-1表达升高。总之,伊马替尼可改善炎症,减轻氧化应激状态,Nrf2和HO-1表达上调,氧化应激产物MDA水平降低,抗氧化酶SOD、GSH水平增高,炎症因子释放减少,肺组织损伤减轻。

综上所述,伊马替尼可改善内毒素血症急性肺损伤,其作用机制可能是通过改善炎症和抗氧化应激来发挥保护作用。本研究也存在不足之处,Nrf2与NF-κB的相互作用,伊马替尼在Nrf2的上游机制尚不明确,后续可通过敲低或过表达方式对其抗氧化通路进行进一步验证。

利益冲突  所有作者声明无利益冲突

作者贡献声明  李端阳、刘雅茹、杨红:课题实施、论文撰写;周芷晴、宗晓龙:数据整理、统计学分析;李真玉:研究设计、实验指导、论文修改、经费支持

参考文献
[1] Artham S, Gao F, Verma A, et al. Endothelial stromelysin1 regulation by the forkhead box-O transcription factors is crucial in the exudative phase of acute lung injury[J]. Pharmacol Res, 2019, 141: 249-263. DOI:10.1016/j.phrs.2019.01.006
[2] Spinelli E, Mauri T, Beitler JR, et al. Respiratory drive in the acute respiratory distress syndrome: pathophysiology, monitoring, and therapeutic interventions[J]. Intensive Care Med, 2020, 46(4): 606-618. DOI:10.1007/s00134-020-05942-6
[3] Tasaka S, Amaya F, Hashimoto S, et al. Roles of oxidants and redox signaling in the pathogenesis of acute respiratory distress syndrome[J]. Antioxid Redox Signal, 2008, 10(4): 739-753. DOI:10.1089/ars.2007.1940
[4] Thompson BT, Chambers RC, Liu KD. Acute respiratory distress syndrome[J]. N Engl J Med, 2017, 377(6): 562-572. DOI:10.1056/nejmra1608077
[5] Cachofeiro V, Goicochea M, de Vinuesa SG, et al. Oxidative stress and inflammation, a link between chronic kidney disease and cardiovascular disease[J]. Kidney Int Suppl, 2008(111): S4-S9. DOI:10.1038/ki.2008.516
[6] Wang J, Pendergast AM. The emerging role of ABL kinases in solid tumors[J]. Trends Cancer, 2015, 1(2): 110-123. DOI:10.1016/j.trecan.2015.07.004
[7] Akashi N, Matsumoto I, Tanaka Y, et al. Comparative suppressive effects of tyrosine kinase inhibitors imatinib and nilotinib in models of autoimmune arthritis[J]. Mod Rheumatol, 2011, 21(3): 267-275. DOI:10.1007/s10165-010-0392-5
[8] Ali T, Kim T, Rehman SU, et al. Natural dietary supplementation of anthocyanins via PI3K/akt/Nrf2/HO-1 pathways mitigate oxidative stress, neurodegeneration, and memory impairment in a mouse model of Alzheimer's disease[J]. Mol Neurobiol, 2018, 55(7): 6076-6093. DOI:10.1007/s12035-017-0798-6
[9] Wei CC, Kong YY, Li GQ, et al. Nicotinamide mononucleotide attenuates brain injury after intracerebral hemorrhage by activating Nrf2/HO-1 signaling pathway[J]. Sci Rep, 2017, 7(1): 717. DOI:10.1038/s41598-017-00851-z
[10] Johnson ER, Matthay MA. Acute lung injury: epidemiology, pathogenesis, and treatment[J]. J Aerosol Med Pulm Drug Deliv, 2010, 23(4): 243-252. DOI:10.1089/jamp.2009.0775
[11] Tsai CL, Lin YC, Wang HM, et al. Baicalein, an active component of Scutellaria baicalensis, protects against lipopolysaccharide-induced acute lung injury in rats[J]. J Ethnopharmacol, 2014, 153(1): 197-206. DOI:10.1016/j.jep.2014.02.010
[12] Kim KH, Kwun MJ, Choi JY, et al. Therapeutic effect of the Tuber of Alisma orientale on lipopolysaccharide-induced acute lung injury[J]. Evid Based Complement Alternat Med, 2013, 2013: 863892. DOI:10.1155/2013/863892
[13] Li P, Liang QL, Cui XD, et al. Protective effects of the active fraction from the tuber of Scirpus yagara in mouse endotoxin shock model[J]. J Ethnopharmacol, 2014, 158 Pt A: 331-337. DOI:10.1016/j.jep.2014.10.032
[14] Kao TI, Chen PJ, Wang YH, et al. Bletinib ameliorates neutrophilic inflammation and lung injury by inhibiting Src family kinase phosphorylation and activity[J]. Br J Pharmacol, 2021, 178(20): 4069-4084. DOI:10.1111/bph.15597
[15] Day E, Waters B, Spiegel K, et al. Inhibition of collagen-induced discoidin domain receptor 1 and 2 activation by imatinib, nilotinib and dasatinib[J]. Eur J Pharmacol, 2008, 599(1/2/3): 44-53. DOI:10.1016/j.ejphar.2008.10.014
[16] Botros L, Pronk MCA, Juschten J, et al. Bosutinib prevents vascular leakage by reducing focal adhesion turnover and reinforcing junctional integrity[J]. J Cell Sci, 2020, 133(9): jcs240077. DOI:10.1242/jcs.240077
[17] Rizzo AN, Sammani S, Esquinca AE, et al. Imatinib attenuates inflammation and vascular leak in a clinically relevant two-hit model of acute lung injury[J]. Am J Physiol Lung Cell Mol Physiol, 2015, 309(11): L1294-L1304. DOI:10.1152/ajplung.00031.2015
[18] Hawez A, Ding ZY, Taha D, et al. C-Abl kinase regulates neutrophil extracellular trap formation and lung injury in abdominal sepsis[J]. Lab Invest, 2022, 102(3): 263-271. DOI:10.1038/s41374-021-00683-6
[19] Rizzo AN, Aman J, van Nieuw Amerongen GP, et al. Targeting Abl kinases to regulate vascular leak during sepsis and acute respiratory distress syndrome[J]. Arterioscler Thromb Vasc Biol, 2015, 35(5): 1071-1079. DOI:10.1161/ATVBAHA.115.305085.[PubMed
[20] Do-Umehara HC, Chen C, Urich D, et al. Suppression of inflammation and acute lung injury by Miz1 via repression of C/EBP-Δ[J]. Nat Immunol, 2013, 14(5): 461-469. DOI:10.1038/ni.2566
[21] 刘雅茹, 李端阳, 杨红, 等. 博舒替尼对内毒素血症小鼠急性肺损伤的影响[J]. 中华麻醉学杂志, 2022, 42(11): 1370-1374. DOI:10.3760/cma.j.cn131073.20220606.01120
[22] Ulasov AV, Rosenkranz AA, Georgiev GP, et al. Nrf2/Keap1/ARE signaling: towards specific regulation[J]. Life Sci, 2022, 291: 120111. DOI:10.1016/j.lfs.2021.120111
[23] 武国艳, 温宇英, 白祥琰, 等. 硫辛酸通过Nrf2-ARE信号通路对百草枯中毒大鼠急性肺损伤保护作用的研究[J]. 中华急诊医学杂志, 2017, 26(7): 773-778. DOI:10.3760/cma.j.issn.1671-0282.2017.07.011
[24] Yin YY, Xu N, Qin T, et al. Astaxanthin provides antioxidant protection in LPS-induced dendritic cells for inflammatory control[J]. Mar Drugs, 2021, 19(10): 534. DOI:10.3390/md19100534
[25] 徐标, 李鸣, 王继武, 等. 盐酸纳美芬缺血后处理通过AMPK/Nrf2/HO-1途径减轻大鼠肺缺血-再灌注损伤的时效性研究[J]. 中华急诊医学杂志, 2023, 32(12): 1686-1692. DOI:10.3760/cma.j.issn.1671-0282.2023.12.019
[26] Maher J, Yamamoto M. The rise of antioxidant signaling: the evolution and hormetic actions of Nrf2[J]. Toxicol Appl Pharmacol, 2010, 244(1): 4-15. DOI:10.1016/j.taap.2010.01.011
[27] Bao LP, Li JS, Zha DQ, et al. Chlorogenic acid prevents diabetic nephropathy by inhibiting oxidative stress and inflammation through modulation of the Nrf2/HO-1 and NF-κB pathways[J]. Int Immunopharmacol, 2018, 54: 245-253. DOI:10.1016/j.intimp.2017.11.021
[28] Zhao CZ, Xiao CS, Feng SQ, et al. Artemisitene Alters LPS-Induced Oxidative stress, inflammation and Ferroptosis in Liver Through Nrf2/HO-1 and NF-κB Pathway[J]. Front Pharmacol, 2023, 14: 1177542. DOI:10.3389/fphar.2023.1177542